Sains Malaysiana 43(2)(2014): 203–209

 

Investigation of the Gelation Mechanism between Amino Acid Surfactant Based

Microemulsion and Kappa-Carrageenan Gel Network

(Kajian tentang Mekanisme Penggelan antara Mikroemulsi Berdasarkan Surfaktan

Amino-Asid dan Rangkaian Gel Kappa-Carrageenan)

NASIMA AKTER1*, SHAHIDAN RADIMAN1, FAIZAL MOHAMED1, NAZARUDDIN BIN RAMLY2, EDY GIRI RACHMAN PUTRA3& ARI SULISTYO RINI4

 

1School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor, Malaysia

 

2School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor, Malaysia

 

3Neutron Scattering Laboratory, National Nuclear Energy Agency of Indonesia (BATAN)

Gedung 40 Kawasan Puspiptek Serpong, Tangerang 15314, Indonesia

 

4Department of Physics, Faculty of Mathematics and Natural Sciences, University of Riau,

Pekanbaru 28293, Riau, Indonesia

 

Diserahkan: 7 Januari 2013/Diterima: 29 Julai 2013

 

ABSTRACT

Kappa-carrageenan is one form of necessary hydrocolloid. Hydrocolloids are macromolecular materials, which swell upon absorption of water; in some cases, forming a stiff gel in the presence of additives. This property is very important to suspend nanocarriers into gel network, which provide them long time stability at a varying temperature range. In this work, we prepared microemulsion and trapped these particles inside the kappa-carrageenan gel network. The microemulsion was composed of sodium N-lauroylsarcosinate hydrate (SNLS), oleic acid and deionized water. The purpose of this study was to immobilize them into the gel network, giving longer shelf life at a range of temperatures for oral drug delivery. Morphological properties were investigated by transmission electron microscope (TEM), dynamic light scattering (DLS) and Fourier transform infrared (FTIR) spectra. The TEM results showed that microemulsions are trapped in the gel network, and the diameter of the microemulsions are below 100 nm, which is comparable with the DLS results. The important functional groups of kappa carrageenan and microemulsion were shown from the FTIR result of the complex microemulsion gel. These results confirmed the interaction between SNLS based microemulsion and kappa-carrageenan gel.

 

Keywords: Gel; kappa-carrageenan; microemulsion

 

ABSTRAK

Kappa-carrageenan adalah sejenis hidrokoloid. Hidrokoloid merupakan bahan makromolekul yang mengembang apabila menyerap air; dalam kes tertentu boleh membentuk gel yang tegar dengan penambahan bahan aditif. Sifat ini sangat penting bagi mengapungkan nanopembawa ke dalam rangkaian gel dan memberikan kestabilan jangka panjang pada julat suhu yang luas. Dalam kajian ini, kami menyediakan mikroemulsi yang diperangkap ke dalam rangkaian gel kappa-carrageenan. Mikroemulsi mempunyai komposisi daripada sodium –N-lauroylsarcosinat hidrat (SNLS), asid oleik dan air nyahion. Tujuan kajian ini adalah untuk memegunkan mikroemulsi ke dalam rangkaian gel bagi memberikan masa simpan yang lama pada julat suhu penghantaran dadah secara oral. Sifat morfologi telah ditentukan dengan menggunakan mikroskop elektron transmisi (TEM), serakan cahaya dinamik (DLS) dan spektrum inframerah penjelmaan Fourier (FTIR). Hasil TEM menunjukkan bahawa mikroemulsi terperangkap dalam rangkaian gel dengan diameter mikroemulsi kurang daripada 100 nm tekal dengan ukuran DLS. Kumpulan berfungsi utama kappa-carrageenan dan mikroemulsi juga dikenal pasti melalui pencirian spektroskopi-FTIR dalam kompleks gel mikroemulsi. Hasil kajian membuktikan bahawa interaksi yang kuat wujud antara mikroemulsi berdasarkan SNLS dan kappa-carrageenan gel.

 

Kata kunci: Gel; kappa-carrageenan; mikroemulsi

RUJUKAN

Abad, L.V., Relleve, L.S., Aranilla, C.T. & Rosa, A.M.D. 2003. Properties of radiation synthesized PVP-kappa carrageenan hydrogel blends. Radiat. Phys. Chem. 68: 901–908.

Akter, N., Radiman, S., Mohamed, F., Rahman, I.A. & Reza, M.I.H. 2011. Ternary phase behaviour and vesicle formation of a sodium N-lauroylsarcosinate hydrate/1-decanol/water system. Sci. Rep. 1: 71.

Akter, N., Radiman, S., Mohamed, F. & Reza, M.I.H. 2013. Self assembled potential bio nanocarriers for drug delivery. Mini Rev. Med. Chem. 13: 1327-1339.

Anderson, N.S., Dolan, T.C.S. & Rees, D.A. 1968. Carrageenans. Part III. Oxidative hydrolysis of methylated κ-carrageenan and evidence for a masked repeating structure. J. Chem. Soc. C. 1968: 596-601.

Anderson, N.S., Campbell, J.W., Harding, M.M., Rees, D.A. & Samuel, J.W.B. 1969. X-ray diffraction studies of polysaccharide sulphates: Double helix models for k- and l- carrageenan. J. Mol. Biol. 45: 85-99.

Borhstrom, J., Piculell, L., Viebke, C. & Talmon, Y. 1996. On the structure of kappa-carrageenan helices. A study by cryo- TEM, optical rotation and viscometry. Int. J. Biol. Macromol. 18: 223-229.

Bourriot, S., Garnier, C. & Doublier, J.L. 1999. Micellar casein– kcarrageenan mixtures. I. Phase separation and ultrastructure. Carbohydr. Polym. 40: 145–157.

Braudo, E.E., Muratalieva, I.R., Plashchina, I.G., Tolstoguzov, V.B. & Markovich, I.S. 1991. Studies on the mechanisms of gelation of kappa-carrageenan and agarose. Colloid Polym. Sci. 269: 1148-1156.

Coats, J. 2000. Interpretation of infrared spectra, a practical approach. In Encyclopedia of Analytical Chemistry, edited by Meyers, R.A. Chichester: John Wiley & Sons Ltd. pp. 10815–10837.

Coimbra, M.A., Barros, A., Barros, M., Rutledge, D.N. & Delgadillo, I. 1998. Multivariate analysis of uronic acid and neutral sugars in whole pectic samples by FT-IR spectroscopy. Carbohyd. Polym. 37(3): 241-248.

Fennema, O.R. 2002. Food Chemistry. 3rd ed. USA: CRC Press.

Flory, P.J. 1941. Molecular size distribution in three dimensional polymer. I. Gelation. J. Am. Chem. Soc. 63: 3083-3090.

Ghosh, S. & Dey, J. 2011. Interaction of sodium N-lauroylsarcosinate with N-alkylpyridinium chloride surfactants: Spontaneous formation of pH-responsive, stable vesicles in aqueous mixtures. J. Colloid Interface Sci. 358: 208-216.

Gómez-Ordóñez, E., Alonso, E. & Rupérez, P. 2011. FTIR-ATR spectroscopy as a tool for polysaccharide identification in edible drown and red seaweeds. Food Hydrocolloid 25: 1514-1520.

Infante, M.R., Perez, L., Pinazo, A., Clapes, P., Moran, M.C., Angelet, M., Garcia, M.T., Vinardell, M.P. & Chimie, C.R. 2004. Amino acid-based surfactants. Comptes Rendus Chimie 7: 583-592.

Karande, P., Jain, A., Arora, A., Ho, M.J. & Mitragotri, S. 2007. Synergistic effects of chemical enhancers on skin permeability: A case study of sodium lauroylsarcosinate and sorbitan monolaurate. Eur. J. Pharm. Sci. 31: 1-7.

Kolesov, D.V., Grigor′, T.E., Gavrilko, D.Y., Makhaeva, E.E., Yaminskii, I.V. & Khokhlov, A.R. 2008. AFM study of the structuration of an ionic surfactant and phenylalanine with K-carrageenan. Prot. Met. 44: 447-450.

Morris, E.R., Rees, D.A. & Robinson, G. 1980. Cation-specific aggregation of carrageenan helices: Domain model of polymer gel structure. Mol. Biol. 138: 349-362.

Piculell, L. 1998. Gelling polysaccharides. Curr. Opin. Colloid Interface Sci. 3: 643-650.

Rees, D.A., Morris, E.R., Thom, D. & Madden, J.K. 1982. Shapes and interactions of carbohydrate chains. In The Polysaccharides, Volume 1, edited by Aspinall, G.O. New York: Academic press.

Rees, D.A. 1969. Conformational analysis of polyscaaharides. Part II. Alternating co-polymers of the agar-carrageenan-chondroitin type by model building in the computer with calculation of helical parameters. J. Chem. Soc. B 1969: 217-226.

Rees, D.A., Steele, I.W. & Williamson, F.B. 1969. Conformational analysis of polysaccharides. Part III. The relationship between stereochemistry and properties of some natural polysaccharide sulphates. J. Polym. Sci. C. 28: 261-276.

Spagnuolo, P.A., Dalgleish, D.G., Goff, H.D. & Morris, E.R. 2005. Kappa-carrageenan interactions in systems containing casein micelles and polysaccharide stabilizers. Food Hydrocolloid. 19: 371-377.

Stockmayer, W.H. 1943. Theory of molecular size distribution and gel formation in branched-chain polymers. J. Chem. Phys. 12: 45-98.

Synytsya, A., Kim, W., Kim, S., Pohl, R., Synytsya, A., Kvasnička, F., Čopíková, J. & Park, Y.I. 2010. Structure and antitumour activity of fucoidan isolated from sporophyll of Korean brown seaweed Undaria pinnatifida. Carbohyd. Polym. 81: 41-48.

Tapia, C., Escobar, Z., Costa, E., Sapag-Hagar, J., Valenzuela, F., Basualto, C., Gai, M.N. & Yazdani-Pedram, M. 2004. Comparative studies on polyelectrolyte complexes and mixtures of chitosan-alginate and chitosan carrageenan as prolonged diltiazem chorhydrate release systems. Eur. J. Pharm. Biopharm. 57: 65-75.

Volery, P., Besson, R. & Schaffer-Lequart, C. 2004. Characterization of commercial carrageenans by Fourier transform infrared spectroscopy using single-reflection attenuated total reflection. J. Agri. Food Chem. 52: 7457- 7463.

Wu, N., Fu, L., Su, M., Aslam, M., Wong, K.C. & Dravid, V.P. 2004. Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Letters 4: 383-386.

 

 

*Pengarang untuk surat-menyurat; email: nasima.physics@yahoo.com

 

 

 

sebelumnya