Sains Malaysiana 41(9)(2012): 1149–1154

 

 

Performance of Two-Samples Pseudo-Median Procedure

(Prestasi Prosedur Pseudo-Median Dua Sampel)

 

 

Nor Aishah Ahad1,*, Abdul Rahman Othman2 & Sharipah Soaad Syed Yahaya1

 

1School of Quantitative Sciences, UUM College of Arts and Sciences

Universiti Utara Malaysia, 06010 Sintok, Kedah, Malaysia

2Robust Statistics Computational Laboratory, School of Distance Education

Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia

 

Diserahkan: 10 Jun 2011 / Diterima: 16 April 2012

 

ABSTRACT

This article investigates the performance of two-sample pseudo-median based procedure in testing differences between groups. The procedure is a modification of the one-sample Wilcoxon procedure using the pseudo-median of differences between group values as the central measure of location. The test was conducted on two groups with moderate sample sizes of symmetric and asymmetric distributions. The performance of the procedure was measured in terms of Type I error and power rates computed via Monte Carlo methods. The performance of the procedure was compared against the t-test and Mann-Whitney-Wilcoxon test. The findings from this study revealed that the pseudo-median procedure performed very well in controlling Type I error rates close to the nominal value. The pseudo-median procedure outperformed the Mann-Whitney-Wilcoxon test and is comparable to the t-test in controlling Type I error and maintaining adequate power.

 

Keywords: Monte Carlo simulation; power; pseudo-median; Type I error

 

ABSTRAK

Artikel ini mengkaji prestasi prosedur berasaskan pseudo-median dua sampel dalam menguji perbezaan di antara kumpulan. Prosedur ini terhasil melalui pengubahsuaian prosedur Wilcoxon satu sampel menggunakan pseudo-median semua perbezaan nilai antara kumpulan sebagai ukuran memusat lokasi. Ujian ini dilakukan ke atas dua kumpulan dengan saiz sampel sederhana daripada taburan simetri dan tidak simetri. Prestasi prosedur ini diukur berasaskan Ralat Jenis I dan kadar kuasa yang diperoleh melalui kaedah Monte Carlo. Prestasi prosedur ini dibandingkan dengan ujian-t dan ujian Mann-Whitney-Wilcoxon. Dapatan kajian menunjukkan bahawa prosedur pseudo-median mempunyai prestasi yang sangat baik dalam mengawal kadar Ralat Jenis I hampir kepada aras nominal. Prosedur pseudo-median mengatasi ujian Mann-Whitney-Wilcoxon dan setanding dengan ujian-t untuk mengawal ralat jenis I dan mengekalkan kuasa yang mencukupi.

 

Kata kunci: Kuasa; pseudo-median; Ralat Jenis I; simulasi Monte Carlo

RUJUKAN

 

Ahad, N.A., Othman, A.R. & Syed Yahaya, S.S. 2011. Comparative performance of Pseudo-Median Procedure, Welch’s Test and Mann-Whitney-Wilcoxon at Specific Pairing. Journal of Modern Applied Science 5(5): 131-139.

Ahad, N.A., Othman, A.R., Syed Yahaya, S.S. & Padmanabhan, A. R. 2009. New Monte Carlo procedure with pseudo-medians for symmetric non-normal distributions. In Mohd Tahir Ismail and Adli Mustafa (eds.) 5th Asian Mathematical Conference Proceedings (volume III), June 2009: 159-165.

Alexander, R.A. & Govern, D.M. 1994. A new and simpler approximation for ANOVA under variance heterogeneity. Journal of Educational Statistics 19: 91-101.

Bradley, J.V. 1978. Robustness? British Journal of Mathematical and Statistical Psychology 31: 144-151.

Cribbie, R.A. & Keselman, H.J. 2003. Pairwise multiple comparisons: A model comparison approach versus stepwise procedures. British Journal of Mathematical and Statistical Psychology 56: 167-182.

Fleishman, A.I. 1978. A method for simulating non-normal distributions. Psychometrika 43: 521-532.

Hollander, M. & Wolfe, D.A. 1999. Nonparametric Statistical Methods. 2nd ed. New York: John Wiley & Sons.

Hoyland, A. 1965. Robustness of the Hodges-Lehmann estimates for shift. The Annals of Mathematical Statistics 36: 174-197.

Keselman, H.J., Carriere, K.C. & Lix, L.M. 1995. Robust and powerful nonorthogonal analyses. Psychometrika 60: 395-418.

Keselman. H.J., Wilcox. R.R., Lix, L. M., Algina, J. & Fradette. K. 2007. Adaptive robust estimation and testing. British Journal of Mathematical and Statistical Psychology 60: 267-293.

Lix, L.M. & Keselman, H.J. 1998. To trim or not to trim: Tests of location equality under heteroscedasticity and non-normality. Educational and Psychological Measurement 58: 409-429.

Maxwell, S.E. & Delaney, H.D. 2004. Designing Experiments and Anlyzing Data (2nd ed.) Mahwah, NJ: Erlbaum.

McGraw, K.O. & Wong, S.P. 1992. A common language effect size statistic. Psychological Bulletin 111: 361-365.

Murphy, K.R. & Myors, B. 2004. Statistical Power Analysis: A Simple and General Model for Traditional and Modern Hypothsis Tests. 2nd ed. Mahwah, New Jersey: Lawrence Erlbaum Associates.

Othman, A.R., Keselman, H.J., Padmanabhan, A.R., Wilcox, R.R. & Fradette, K. 2004. Comparing measures of the “typical” score across treatment groups. British Journal of Mathematical and Statistical Psychology 57: 215-234.

SAS Institute Inc. 2006. SAS Online Doc. Cary, NC: SAS Institute Inc.

Syed Yahaya, S.S., Othman, A.R. & Keselman, H.J. 2006. Comparing the “typical scores” across independent groups based on different criteria for trimming. Metodoloski zvezki 3: 49-62.

Vargha, A. & Delaney, H.D. 2000. A critique and improvement of the CL common language effect size statistics of McGraw and Wong. Journal of Educational and Behavioral Statistics 25: 101-132.

Welch, B.L. 1938. The significance of the difference between two means when the population variances are unequal. Biometrika 29: 350-362.

Wilcox, R.R. 1994. A one-way random effects model for trimmed means. Psychometrika 59: 289-306.

Wilcox, R.R. 2005. Introduction to Robust Estimation And Hypothesis Testing. New York: Academic Press.

 

*Pengarang untuk surat-menyurat; email: aishah@uum.edu.my

 

 

sebelumnya