Sains Malaysiana
40(2)(2011): 181–190
Kesan Teknik
Pengaktifan Bermangkin Berbeza Terhadap Prestasi Terma Penyebar Haba Cip
Balikan
(Effects of
Different Catalytic Activation Techniques on the Thermal Performance of Flip
Chip Heat Spreader)
Victor Lim* & Nowshad Amin
Jabatan Kejuruteraan Elektrik, Elektronik dan Sistem, Fakulti
Kejuruteraan dan Alam Bina
Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor D.E., Malaysia
C.S. Foong
Freescale Semiconductor, (M) Sdn. Bhd., No. 2, Jalan SS 8/2
Free Industrial Zone Sungei Way, Petaling Jaya 47300 Selangor
D.E., Malaysia
Ibrahim Ahmad
Department of Electronics and Communication, College of
Engineering
Universiti Tenaga Nasional, 43009 Kajang, Selangor D.E., Malaysia
Azami Zaharim
Unit Pengajian Asas Kejuruteraan, Fakulti Kejuruteraan dan Alam
Bina
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E., Malaysia
Rozaidi
Rasid & Azman Jalar
Advanced
Semiconductor Packaging Laboratory
Institute
of Micro Engineering and Nanoelectronics, Universiti Kebangsaan Malaysia
43600 UKM Bangi, Selangor D.E., Malaysia
Diserahkan:
14 Julai 2009 / Diterima: 7 Julai 2010
ABSTRAK
Kertas ini membentangkan
kesan dua teknik pengaktifan bermangkin yang berbeza terhadap prestasi terma
bagi penyebar haba cip balikan. Penyaduran nikel tanpa elektrik digunakan
sebagai salah satu teknik saduran kerana ia boleh membentuk satu lapisan nikel
yang ketebalannya seragam ke atas substrat kuprum. Proses pengaktifan
bermangkin perlu dilakukan dahulu untuk mengenapkan sesetengah atom nikel ke
atas substrat kuprum, supaya enapan nikel mampu untuk memangkinkan proses
penurunan yang seterusnya. Dua jenis teknik pengakitfan telah dikaji, iaitu
pemulaan galvani dan penyaduran nipis nikel-kuprum. Ujian simpanan suhu tinggi
telah dijalankan untuk mengkaji takat resapan antara logam bagi lapisan nikel
and kuprum. Kemeresapan terma bagi penyebar haba telah dikaji dengan
menggunakan peralatan Nano-flash. Keputusan yang diperolehi menunjukkan bahawa
penyebar haba yang diproses dengan penyaduran nipis nikel-kuprum mempunyai
nilai kemeresapan terma (35-65 mm2 s-1)
yang lebih rendah berbanding dengan penyebar haba yang diproses dengan teknik
pemulaan galvani (60-85 mm2 s-1).
Selain daripada itu, kajian ini juga menemui ketebalan lapisan antara logam
nikel-kuprum dalam penyebar haba ini bertambah daripada 0.2 μm pada
keadaan asal kepada 0.55 μm selepas 168 jam simpanan suhu tinggi. Lapisan
antara logam nikel-kuprum mempunyai kekonduksian terma yang lebih rendah
berbanding dengan kuprum tulen, ini telah merendahkan kemeresapan terma bagi
penyebar haba. Kesimpulannya, teknik pemulaan galvani meyediakan prestasi terma
yang lebih baik untuk penyebar haba yang digunakan dalam pembungkusan
semikonduktor.
Kata kunci: Pemulaan
galvani; penyaduran nikel tanpa elektrik; penyaduran nipis nikel-kuprum;
penyebar haba
ABSTRACT
This paper presents the
effects of two different catalytic activation techniques on the thermal
performance of flip chip heat spreaders. Electroless nickel plating is used as
a plating technique as it can form a uniform thickness of nickel layer onto the
copper substrate. Catalytic activation process needs to be done first to
deposit some nickel atom onto copper substrate, so that the deposited nickel is
able to catalyze the following reduction process. The two activation techniques
investigated are galvanic initiation and thin nickel-copper strike. High
temperature storage tests were ran to investigate the extent of intermetallic
diffusion between the nickel and copper layers. Thermal diffusivity of these
heat spreaders was studied using the Nano-flash apparatus. The results obtained
showed that heat spreaders processed with thin nickel copper strike have lower
thermal diffusivities (35-65 mm2 s-1)
compared to those heat spreaders processed with galvanic-initiation (60-85 mm2 s-1).
It is also discovered that the nickel-copper intermetallic layers of these heat
spreaders grew thicker from 0.2 μm at initial time until 0.55 μm
after high temperature storage of 168 hours. Nickel-copper intermetallic layers
have lower thermal conductivity compared to pure copper, this further degrading
the thermal diffusivity of these heat spreaders. As a conclusion, the galvanic
initiation technique provides better thermal performance for heat spreaders
used in semiconductor package.
Keyword:
Electroless nickel plating; galvanic initiation; heat spreader; thin
nickel-copper strike
RUJUKAN
Aschenbrenner,
R., Ostmann, A., Beutler, U., Simon, J. & Reichl, H. 1995. Electroless
nickel/copper plating as a new bump metallization. IEEE Transaction on
Components, Packaging, and Manufacturing Technology-Part B 18(2): 334-338.
Bakonyi,
I., Toth-Kadar, E., Toth, J., Becsei, T., Tarnoczi, T. & Kamasa, P. 1999.
Magnetic and electrical transport properties of electrodeposited Ni–Cu alloys
and Ni81Cu19/Cu multilayers. J. Phys.:
Condens. Matter 11: 963-973.
Cengel,
Y.A. 2007. Heat and Mass Transfer: A Practical Approach. 3rd Ed. Boston:
McGraw-Hill.
Chen,
Yujin, Cao, Maosheng, Xu, Qiang & Zhu, Jing. 2003. Electroless nickel
plating on silicon carbide nanoparticles. Surface and Coating Technology 172:
90-94.
Cui,
Guofeng, Li, Ning, Li, Deyu & Chi, Minglei. 2005. Study of optimized
complexing agent for low-phosphorus electroless nickel plating bath. Journal
of the Electrochemical Society 152(10): C669-C674.
Fritz,
T., Mokwa, W. & Schnokenberg, U. 2001. Material characterization of
electroplated nickel structures for microsystem technology. Electrochimica 47:
55-60.
Gaal,
P.S., Thermitus, M.A. & Stroe, D.E. 2004. Thermal conductivity measurements
using the flash methold. Journal of Thermal Analysis and Calorimetry 78:
185-189.
JEDEC.
2004. JESD22-A103C: High Temperature Storage Life. Arlington: JEDEC
Solid State Technology Association.
Kanungo,
J., Pramanik, C., Bandopadhyay, S., Gangopadhyay, U., Das, L., Saha, H. &
Gettens, R.T.T. 2006. Improved contacts on a porous silicon layer by
electroless nickel plating and copper thickening. Semicond. Sci. Technol. 21:
964-970.
Kwon,
Y.S., An, V.V., Ilyin, A.P. & Tikhonov, D.V. 2006. Properties of powders
produced by electrical explosions of copper-nickel alloys wires. Materials
Letters 61: 3247-3250.
Rao,
G.R., Mishra, B.G. & Sahu, H.R. 2004. Synthesis of CuO, Cu and CuNi alloy
particles by solution combustion using carbahydrazide and
N-tertiarybutoxy¬carbonylpiperazine fuels. Materials Letters 58:
3523-3527.
Saitou,
M., Okudaira, Y. & Oshikawa, W. 2003. Amorphous structures and kinetics of
phosphorous incorporation in electrodeposited Ni-P thin films. Journal of
the Electrochemical Society 150(3): C140-C143.
Samson,
E.C., Machiroutu, S.V., Chang, J.Y., Santos, I., Hermerding, J., Dani, A.,
Prasher, R. & Song, D.W. 2005. Interface material selection and thermal
management technique in second-generation platforms built on Intel Centrino
mobile technology. Intel Technology Journal 9(1): 75-86.
Sartorelli,
M.L., Schervenski, A.Q., Delatorre, R.G., Klauss, P., Maliska, A.M. & Pasa,
A.A. 2001. Cu–Ni thin films electrodeposited on Si: composition and current efficiency. Phys. Stat. Sol. (a) 187(1): 91-95.
Singh,
S., Ghosh, S.K., Basu, S., Gupta, M., Mishra, P. & Groverb, A.K. 2006.
Structural and magnetic study of an electrodeposited Ni/Cu thin film by neutron
reflectometry. Electrochemical and Solid-State Letters 9(3): J5-J8.
Watanabe,
H. & Honma, H. 1998. Direct electroless nickel plating on copper circuits
using DMAB as a second reducing agent. IEMT/IMC Proceedings: 149-53.
Yamada,
T., Yamamoto, A., Fujiwara, M. & Kunigi, Y. 1993. Strength evaluation and
effect of graphite on strength of electroless nickel plating on cast iron. Journal
of Materials Science 28: 3513-3518.
*Pengarang untuk surat-menyurat: email:
victorlimch@hotmail.com
|