Sains Malaysiana 52(6)(2023): 1607-1617

http://doi.org/10.17576/jsm-2023-5206-01

 

Supplementary Feed Potential on Histology and Immune Response of Tilapia (Oreochromis niloticus L.) Exposed to Microplastics

(Potensi Makanan Tambahan ke atas Histologi dan Tindak Balas Imun Tilapia (Oreochromis niloticus L.) Terdedah kepada Mikroplastik)

 

ALFIAH HAYATI1,*, MANIKYA PRAMUDYA1, HARI SOEPRIANDONO1, LISTIJANI SUHARGO1, FIRLI RAHMAH PRIMULA DEWI1, BAYYINATUL MUCHTAROMAH2 & ADAMU AYUBU MWENDOLWA3

 

1Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia

2Biology Study Program, Faculty of Science and Technology, Universitas Islam Negeri Maulana Malik Ibrahim, Malang, Indonesia

3Department of Biological Sciences, Faculty of Science, Mkwawa University College of Education, Tanzania

 

Received: 16 February 2023/Accepted: 31 May 2023

 

Abstract

Polyester microplastics (PS) are toxic and hazardous chemicals in the ecosystem that can induce stress. Disposing PS articles into the environment can negatively impact health of aquatic biota, including fish. This study aimed to investigate the potential of probiotics or vitamin C supplementation in improving the histological structure of organs and cytokine secretion in tilapia fish exposed to PS. Thirty-six tilapia were divided into 12 groups consisting of treatment groups (four PS concentration variations: 0, 0.1, 1, and 10 mg/L). Each treatment was given three types of feed: Commercial feed alone, commercial feed containing probiotics (200 mL/kg), and commercial feed containing vitamin C (100 mg/kg). The study had a sample size of n=3. After treatment was completed, all parameters were measured. The result showed that the addition of probiotics and vitamin C could decrease TNF-α levels and increase IFN-γ levels. Probiotics and vitamin C prevent healthy cells to be damaged by pro-inflammatory cytokines. The percentage of normal hepatocytes increased significantly in all treatment groups with the addition of probiotics or vitamin C. Furthermore, the percentage of hepatocytes with swelling and necrosis decreased significantly in treatment groups (p < 0.05). Additionally, villi height, lamina propria width, submucosa height, and the number of goblet cells all increased significantly in all treatment groups with the administration of probiotics or vitamin C (p < 0.05). Overall, both probiotics and vitamin C supplements have the potential to maintain fish health. Vitamin C exhibits a greater potential than probiotics in regulating immune responses. Meanwhile, both probiotics and vitamin C supplements have potential to inhibit damage to the hepatic and intestine structures of fish exposed to PS.

 

Keywords: Fish; fisheries; freshwater; polystyrene; probiotics

 

Abstrak

Mikroplastik poliester (PS) adalah bahan kimia toksik dan berbahaya dalam ekosistem yang boleh menyebabkan tekanan. Penyingkiran artikel PS ke alam sekitar boleh memberi kesan negatif kepada kesihatan biota akuatik, termasuk ikan. Penyelidikan ini bertujuan untuk mengkaji potensi probiotik atau suplemen vitamin C dalam memperbaiki struktur histologi organ dan rembesan sitokin pada ikan tilapia yang terdedah kepada PS. Tiga puluh enam tilapia dibahagikan kepada 12 kumpulan yang terdiri daripada kumpulan rawatan (empat variasi kepekatan PS: 0, 0.1, 1 dan 10 mg/L). Setiap rawatan diberi tiga jenis makanan: Makanan komersial sahaja, makanan komersial yang mengandungi probiotik (200 mL/kg) dan makanan komersial yang mengandungi vitamin C (100 mg/kg). Kajian ini mempunyai saiz sampel n=3. Selepas rawatan selesai, semua parameter diukur. Hasil kajian menunjukkan bahawa penambahan probiotik dan vitamin C boleh mengurangkan tahap TNF-α dan meningkatkan tahap IFN-γ. Probiotik dan vitamin C menghalang sel yang sihat daripada rosak oleh sitokin pro-radang. Peratusan hepatosit normal meningkat dengan ketara dalam semua kumpulan rawatan dengan penambahan probiotik atau vitamin C. Tambahan pula, peratusan hepatosit dengan bengkak dan nekrosis menurun dengan ketara dalam kumpulan rawatan (p < 0.05). Selain itu, ketinggian vili, lebar lamina propria, ketinggian submukosa dan bilangan sel goblet semuanya meningkat dengan ketara dalam semua kumpulan rawatan dengan pemberian probiotik atau vitamin C (p <0.05). Secara keseluruhan, kedua-dua probiotik dan suplemen vitamin C berpotensi untuk mengekalkan kesihatan ikan. Vitamin C menunjukkan potensi yang lebih besar daripada probiotik dalam mengawal tindak balas imun. Sementara itu, kedua-dua probiotik dan suplemen vitamin C berpotensi untuk menghalang kerosakan pada struktur hati dan usus ikan yang terdedah kepada PS.

 

Kata kunci: Air tawar; ikan; perikanan; polistirena; probiotik

 

REFERENCES

Ahrendt, C., Perez-Venegas, D.J., Urbina, M., Gonzalez, C., Echeveste, P. & Aldana, M. 2020. Microplastic ingestion cause intestinal lesions in the intertidal fish Girella laevifrons. Marine Pollution Bulletin 151: 110795.

Annkatrin, W., Schwiebs, A., Solhaug, H., Stenvik, J., Nilsen, A.M., Wagner, M., Relja, B. & Radeke, H.H. 2022. Nanoplastics affect the inflammatory cytokine release by primary human monocytes and dendritic cells. Environment International 163: 107173.

Avio, C.J., Gorbi, S., Milan, M., Benedetti, M., Fattorini, D., d'Errico, G., Pauletto, M., Bargelloni, L. & Regoli, F. 2015. Pollutants bioavailability and toxicology risk from microplastics to marine mussels. Environ. Pollut. 198: 211-222.

Barría, C., Brandts, I., Tort, L., Oliveira, M. & Teles, M. 2020. Effect of nanoplastics on fish health and performance: A review. Mar. Pollut. Bull. 151: 110791.

Bozkurt, H.S., Yörüklü, H.C., Bozkurt, K., Denktaş, C., Bozdoğan, A., Özdemir, O. & Özkaya, B. 2022. Biodegradation of microplastic by probiotic Bifidobacterium. International Journal of Global Warming 26(4): 429-443.

Cedervall, T., Hansson, L.A., Lard, M., Frohm, B. & Linse, S. 2012. Food chain transport of nanoparticles affects behaviour and fat metabolism in fish. PLoS ONE 7(2): E32254. http://Dx.Doi.Org/10.1371/Journal.Pone.0032254

Cheng, H., Duan, Z., Wu, Y., Wang, Y., Zhang, H., Shi, Y., Zhang, H., Wei, Y. & Sun, H. 2022. Immunotoxicity responses to polystyrene nanoplastics and their related mechanisms in the liver of zebrafish (Danio rerio) larvae. Environment International 161: 107128.

Chiang, L., Ng, L.T., Chiang, W., Chang, M. & Lin, C. 2003. Immunomodulatory activities of flavonoids, monoterpenoids, triterpenoids, iridoid glycosides and phenolic compounds of plantago species. Planta Medica 69: 600-604.

Cocci, P., Gabrielli, S., Pastore, G., Minicucci, M., Mosconi, G. & Palermo, F.A. 2022. Microplastics accumulation in gastrointestinal tracts of Mullus barbatus and Merluccius merluccius is associated with increased cytokine production and signaling. Chemosphere 307: 1-9.

Cole, M., Lindeque, P., Fileman, E., Halsband, C., Goodhead, R., Moger J. & Galloway, T.S. 2013. Microplastic ingestion by zooplankton. Environ. Sci. Technol. 47(12): 6646-6655.

Dong, R., Zhou, C., Wang, S., Yan, Y. & Jiang, Q. 2022. Probiotics ameliorate polyethyelene microplastics-induced liver injury by inhibition of oxidative stress in Nile tilapia (Oreochromis niloticus). Fish & Shellfish Immunology 130: 261-272.

Frias, J.P.G.L. & Nash, R. 2019. Microplastics: Finding a consensus on the definition. Marine Pollution Bulletin 138: 145-147.

Graham, E.R. & Thompson, J.T. 2009. Deposit- and suspension-feeding sea cucumbers (Echinodermata) ingest plastic fragments. J. Exp. Mar. Biol. Ecol. 368: 22-29.

Hartmann, N.B., Hüffer, T., Thompson, R.C., Hassell ̈ov, M., Verschoor, A., Daugaard, A., Rist, E., Karlsson, S., Brennholt, T., Cole, N., Herrling, M., Hess, M.P., Ivleva, P., Lusher, A.L. & Wagner, M. 2019. Recommendations for a definition and categorization framework for plastic debris. Environmental Science Technology 53(3): 1039-1047. https://doi.org/10.1021/acs.est.8b05297

Hayati, A., Pramudya, M., Supriyanto, A., Nurhariyati, T., Zahra, P.F. & Hayaza, S. 2021. Effect of medicinal plants rhizome on growth performance of tilapia (Oreochromis niloticus) exposed to microplastics. IOP Conf. Series: Earth and Environ Sci. 718 (012005): 1-7.

Huang, J.N., Wen, B., Zhu, J.G., Zhang, Y.S., Gao, J.Z. & Chen, Z.Z. 2020. Exposure to microplastics impairs digestive performance. Stimulates immune response and induces microbiota dysbiosis in the gut of juvenile guppy (I). Science of the Total Environment 733: 1-12.

Hu, M. & Palić, D. 2020. Micro- and nano-plastics activation of oxidative and inflammatory adverse outcome pathways. Redox Biol. 2020: Article ID. 101620. 10.1016/j.redox.2020.101620

Jin, Y.X., Liu, Z.Z., Peng, T. & Fu, Z.W. 2015. The toxicity of chlorpyrifos on the early life stage of zebrafish: A survey on the endpoints at development, locomotor behavior, oxidative stress and immunotoxicity. Fish Shellfish Immunology 43: 405-414.

Kumar, V., Abbas, A.K. & Aster, J.C. 2015. Basic Pathology. 9th ed. Philadelphia: Elsevier. pp. 95-96.

Lönnstedt, O.M. & Eklöv, P. 2016. Environmentally relevant concentrations of microplastic particles influence larval fish ecology. Science 352: 1213-1216.

Mbugani, J.J., Machiwa, J.F., Shilla, D.A., Kimaro, W., Joseph, D. & Khan, F.R. 2015. Histomorphological damage in the small intestine of Wami tilapia (Oreochromis urolepis) (Norman, 1922) exposed to microplastics remain long after depuration. Microplastics 1: 240-253. https://doi.org/ 10.3390/microplastics1020017

Nabila, A. & Mufti, P. 2021. Microplastics abundance in gills and gastrointestinal tract of Epinephelus fuscoguttatus-lanceolatus at the Coastal of Pulau Panjang, Serang, Banten. Web of Conferences 324(1): 01002. 10.1051/e3sconf/202132401002

Notash, S. 2012. The effect of additive vitamin C on growth. feed conversion ratio. and survival rate of rainbow trout (Onchynchus mykiss). Australian Journal of Basic and Applied Sciences 6(6): 86-89.

Popovic, L.M., Mitic, N.R., Miric, D., Bisevac, B., Miric, M. & Popovic, B. 2015. Influence of vitamin c supplementation on oxidative stress and neutrophil inflammatory response in acute and regular exercise. Oxidative Medicine and Cellular Longevityhttps://doi.org/10.1155/2015/295497

Rochman, C.M. 2015. Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Scientific Reports 5: 14340.

Sylviana, N., Gunawan, H., Lesmana, R., Purba, A. & Akbar, I.B. 2017. The effect of astaxanthin and regular training on dynamic pattern of oxidative stress on male under strenuous exercise. Indonesian Journal of Clinical Pharmacy 6(1): 46-54. https://doi.org/10.15416/ijcp.2017.6.1.46

Thompson, R.C., Swan, S.H., Moore, C.J. & Saal, F.S. 2009. Our plastic age. Philosophical transactions of the Royal Society B. Biological Science  364(1526): 2153-2166.

United Nations Environment Programme. 2021. From Pollution to Solution. A global Assessment of Marine Litter and Plastic Pollution Nairobi. United Nations Environment Pogramme (UNEP).

Wang, D., Shi, L., Xin, W. & Xu, J. 2017. Activation of PPAR-γ inhibits pro inflammatory cytokines production by upregulation of miR- 124 in vitro and in vivo. Biochemical and Biophysical Research, Communications 486(3): 726-731.

Zhu, B.K., Fang, Y.M., Zhu, D., Christie, P., Ke, X. & Zhu, Y.G. 2018. Exposure to nanoplastics disturbs the gut microbiome in the soil oligochaete Enchytraeus crypticus. Environ. Pollut. 239: 408-415.

 

*Corresponding author; email: alfiah-h@fst.unair.ac.id