Sains Malaysiana 52(6)(2023):
1607-1617
http://doi.org/10.17576/jsm-2023-5206-01
Supplementary Feed Potential on Histology
and Immune Response of Tilapia (Oreochromis niloticus L.) Exposed to Microplastics
(Potensi Makanan Tambahan ke atas Histologi dan Tindak Balas Imun Tilapia (Oreochromis niloticus L.) Terdedah kepada Mikroplastik)
ALFIAH
HAYATI1,*, MANIKYA PRAMUDYA1,
HARI SOEPRIANDONO1, LISTIJANI SUHARGO1, FIRLI RAHMAH
PRIMULA DEWI1, BAYYINATUL MUCHTAROMAH2 & ADAMU AYUBU
MWENDOLWA3
1Department of Biology, Faculty
of Science and Technology, Universitas Airlangga, Surabaya, Indonesia
2Biology Study Program,
Faculty of Science and Technology, Universitas Islam Negeri Maulana Malik Ibrahim,
Malang, Indonesia
3Department of Biological
Sciences, Faculty of Science, Mkwawa University
College of Education, Tanzania
Received: 16 February 2023/Accepted: 31 May 2023
Abstract
Polyester microplastics (PS) are toxic and hazardous chemicals
in the ecosystem that can induce stress. Disposing PS articles into the
environment can negatively impact health of aquatic biota, including fish. This
study aimed to investigate the potential of probiotics or vitamin C
supplementation in improving the histological structure of organs and cytokine
secretion in tilapia fish exposed to PS. Thirty-six tilapia were divided
into 12 groups consisting of treatment groups (four PS concentration
variations: 0, 0.1, 1, and 10 mg/L). Each treatment was given three types of
feed: Commercial feed alone, commercial feed containing
probiotics (200 mL/kg), and commercial feed containing vitamin C (100 mg/kg).
The study had a sample size of n=3. After treatment was completed, all parameters were
measured. The result showed that the addition of probiotics and vitamin C could
decrease TNF-α levels and increase IFN-γ levels. Probiotics and
vitamin C prevent healthy cells to be damaged by pro-inflammatory cytokines.
The percentage of normal hepatocytes increased significantly in all treatment
groups with the addition of probiotics or vitamin C. Furthermore, the
percentage of hepatocytes with swelling and necrosis decreased significantly in
treatment groups (p < 0.05). Additionally, villi height, lamina propria width, submucosa height, and the number of goblet
cells all increased significantly in all treatment groups with the
administration of probiotics or vitamin C (p < 0.05). Overall, both
probiotics and vitamin C supplements have the potential to maintain fish
health. Vitamin C exhibits a greater potential than probiotics in regulating
immune responses. Meanwhile, both probiotics and vitamin C supplements have
potential to inhibit damage to the hepatic and intestine structures of fish
exposed to PS.
Keywords:
Fish; fisheries; freshwater; polystyrene; probiotics
Abstrak
Mikroplastik poliester (PS) adalah bahan kimia toksik dan berbahaya dalam ekosistem yang boleh menyebabkan tekanan. Penyingkiran artikel PS ke alam sekitar boleh memberi kesan negatif kepada kesihatan biota akuatik, termasuk ikan. Penyelidikan ini bertujuan untuk mengkaji potensi probiotik atau suplemen vitamin C dalam memperbaiki struktur histologi organ dan rembesan sitokin pada ikan tilapia yang terdedah kepada PS. Tiga puluh enam tilapia dibahagikan kepada 12 kumpulan yang terdiri daripada kumpulan rawatan (empat variasi kepekatan PS: 0, 0.1, 1 dan 10 mg/L). Setiap rawatan diberi tiga jenis makanan: Makanan komersial sahaja, makanan komersial yang mengandungi probiotik (200 mL/kg) dan makanan komersial yang mengandungi vitamin C (100 mg/kg). Kajian ini mempunyai saiz sampel n=3. Selepas rawatan selesai, semua parameter diukur. Hasil kajian menunjukkan bahawa penambahan probiotik dan vitamin C boleh mengurangkan tahap TNF-α dan meningkatkan tahap IFN-γ. Probiotik dan vitamin C menghalang sel yang sihat daripada rosak oleh sitokin pro-radang. Peratusan hepatosit normal meningkat dengan ketara dalam semua kumpulan rawatan dengan penambahan probiotik atau vitamin C. Tambahan pula, peratusan hepatosit dengan bengkak dan nekrosis menurun dengan ketara dalam kumpulan rawatan (p < 0.05). Selain itu, ketinggian vili, lebar lamina propria, ketinggian submukosa dan bilangan sel goblet semuanya meningkat dengan ketara dalam semua kumpulan rawatan dengan pemberian probiotik atau vitamin C (p
<0.05). Secara keseluruhan, kedua-dua probiotik dan suplemen vitamin C berpotensi untuk mengekalkan kesihatan ikan. Vitamin C menunjukkan potensi yang lebih besar daripada probiotik dalam mengawal tindak balas imun. Sementara itu, kedua-dua probiotik dan suplemen vitamin C berpotensi untuk menghalang kerosakan pada struktur hati dan usus ikan yang terdedah kepada PS.
Kata kunci: Air tawar; ikan; perikanan; polistirena; probiotik
REFERENCES
Ahrendt, C., Perez-Venegas, D.J., Urbina,
M., Gonzalez, C., Echeveste, P. & Aldana, M. 2020. Microplastic ingestion cause intestinal lesions in the intertidal fish Girella laevifrons. Marine Pollution Bulletin 151:
110795.
Annkatrin, W., Schwiebs,
A., Solhaug, H., Stenvik,
J., Nilsen, A.M., Wagner, M., Relja, B. & Radeke,
H.H. 2022. Nanoplastics affect the inflammatory
cytokine release by primary human monocytes and dendritic cells. Environment International 163: 107173.
Avio, C.J., Gorbi, S., Milan,
M., Benedetti, M., Fattorini, D., d'Errico,
G., Pauletto, M., Bargelloni,
L. & Regoli, F. 2015. Pollutants bioavailability
and toxicology risk from microplastics to marine
mussels. Environ. Pollut. 198: 211-222.
Barría, C., Brandts, I., Tort, L.,
Oliveira, M. & Teles, M. 2020. Effect of nanoplastics on fish health and performance: A review. Mar. Pollut. Bull. 151: 110791.
Bozkurt,
H.S., Yörüklü, H.C., Bozkurt, K., Denktaş,
C., Bozdoğan, A., Özdemir,
O. & Özkaya, B. 2022. Biodegradation of microplastic by probiotic Bifidobacterium. International Journal of Global Warming 26(4):
429-443.
Cedervall, T., Hansson, L.A., Lard,
M., Frohm, B. & Linse, S. 2012. Food chain transport of nanoparticles affects behaviour and fat metabolism in fish. PLoS ONE 7(2): E32254. http://Dx.Doi.Org/10.1371/Journal.Pone.0032254
Cheng,
H., Duan, Z., Wu, Y., Wang, Y., Zhang, H., Shi, Y.,
Zhang, H., Wei, Y. & Sun, H. 2022. Immunotoxicity responses to polystyrene nanoplastics and their
related mechanisms in the liver of zebrafish (Danio rerio)
larvae. Environment International 161: 107128.
Chiang,
L., Ng, L.T., Chiang, W., Chang, M. & Lin, C. 2003. Immunomodulatory
activities of flavonoids, monoterpenoids,
triterpenoids, iridoid glycosides and phenolic
compounds of plantago species. Planta Medica 69: 600-604.
Cocci,
P., Gabrielli, S., Pastore,
G., Minicucci, M., Mosconi,
G. & Palermo, F.A. 2022. Microplastics accumulation in gastrointestinal tracts of Mullus barbatus and Merluccius merluccius is associated with increased cytokine
production and signaling. Chemosphere 307:
1-9.
Cole,
M., Lindeque, P., Fileman,
E., Halsband, C., Goodhead,
R., Moger J. & Galloway, T.S. 2013. Microplastic ingestion by zooplankton. Environ. Sci.
Technol. 47(12): 6646-6655.
Dong,
R., Zhou, C., Wang, S., Yan, Y. & Jiang, Q. 2022. Probiotics ameliorate polyethyelene microplastics-induced
liver injury by inhibition of oxidative stress in Nile tilapia (Oreochromis niloticus). Fish & Shellfish Immunology 130: 261-272.
Frias, J.P.G.L.
& Nash, R. 2019. Microplastics: Finding a consensus on the
definition. Marine Pollution Bulletin 138: 145-147.
Graham,
E.R. & Thompson, J.T. 2009. Deposit- and suspension-feeding sea cucumbers
(Echinodermata) ingest plastic fragments. J. Exp. Mar. Biol. Ecol. 368:
22-29.
Hartmann,
N.B., Hüffer, T., Thompson, R.C., Hassell ̈ov, M., Verschoor, A., Daugaard, A., Rist, E., Karlsson, S., Brennholt, T.,
Cole, N., Herrling, M., Hess, M.P., Ivleva, P., Lusher, A.L. & Wagner, M. 2019.
Recommendations for a definition and categorization framework for plastic
debris. Environmental Science Technology 53(3): 1039-1047. https://doi.org/10.1021/acs.est.8b05297
Hayati, A., Pramudya, M., Supriyanto, A., Nurhariyati, T.,
Zahra, P.F. & Hayaza, S. 2021. Effect of
medicinal plants rhizome on growth performance of tilapia (Oreochromis niloticus) exposed to microplastics. IOP Conf. Series: Earth and Environ Sci. 718 (012005): 1-7.
Huang,
J.N., Wen, B., Zhu, J.G., Zhang, Y.S., Gao, J.Z. & Chen, Z.Z. 2020.
Exposure to microplastics impairs digestive
performance. Stimulates immune response and induces microbiota dysbiosis in the gut of juvenile guppy (I). Science of
the Total Environment 733: 1-12.
Hu,
M. & Palić, D. 2020. Micro- and nano-plastics activation of oxidative and inflammatory
adverse outcome pathways. Redox Biol. 2020: Article ID. 101620.
10.1016/j.redox.2020.101620
Jin, Y.X., Liu, Z.Z., Peng, T. & Fu, Z.W. 2015. The
toxicity of chlorpyrifos on the early life stage of
zebrafish: A survey on the endpoints at development, locomotor behavior, oxidative stress and immunotoxicity. Fish Shellfish Immunology 43: 405-414.
Kumar, V., Abbas, A.K. & Aster, J.C. 2015. Basic Pathology. 9th ed. Philadelphia: Elsevier.
pp. 95-96.
Lönnstedt, O.M. & Eklöv, P. 2016. Environmentally relevant concentrations of microplastic particles influence larval fish ecology. Science 352: 1213-1216.
Mbugani, J.J., Machiwa,
J.F., Shilla, D.A., Kimaro,
W., Joseph, D. & Khan, F.R. 2015. Histomorphological damage in the small
intestine of Wami tilapia (Oreochromis urolepis) (Norman, 1922) exposed to microplastics remain long after depuration. Microplastics 1: 240-253. https://doi.org/
10.3390/microplastics1020017
Nabila,
A. & Mufti, P. 2021. Microplastics abundance in
gills and gastrointestinal tract of Epinephelus fuscoguttatus-lanceolatus at the Coastal of Pulau Panjang, Serang, Banten. Web of Conferences 324(1): 01002.
10.1051/e3sconf/202132401002
Notash, S. 2012. The effect of additive vitamin C on growth.
feed conversion ratio. and survival rate of rainbow trout (Onchynchus mykiss). Australian Journal of Basic and Applied Sciences 6(6): 86-89.
Popovic, L.M., Mitic, N.R., Miric, D., Bisevac, B., Miric, M. & Popovic, B. 2015. Influence of vitamin c supplementation on oxidative stress and neutrophil inflammatory response in acute and regular exercise. Oxidative Medicine and Cellular Longevityhttps://doi.org/10.1155/2015/295497
Rochman, C.M. 2015. Anthropogenic debris
in seafood: Plastic debris and fibers from textiles
in fish and bivalves sold for human consumption. Scientific Reports 5:
14340.
Sylviana, N., Gunawan,
H., Lesmana, R., Purba, A. & Akbar, I.B. 2017. The
effect of astaxanthin and regular training on dynamic
pattern of oxidative stress on male under strenuous exercise. Indonesian Journal of Clinical Pharmacy 6(1): 46-54. https://doi.org/10.15416/ijcp.2017.6.1.46
Thompson, R.C., Swan, S.H., Moore, C.J. & Saal, F.S. 2009. Our plastic age. Philosophical transactions of the Royal Society B. Biological Science 364(1526): 2153-2166.
United
Nations Environment Programme. 2021. From Pollution to Solution. A global
Assessment of Marine Litter and Plastic Pollution Nairobi. United Nations
Environment Pogramme (UNEP).
Wang, D., Shi, L., Xin, W. & Xu, J. 2017. Activation of PPAR-γ inhibits pro inflammatory cytokines production by upregulation of miR- 124 in vitro and in vivo. Biochemical and Biophysical Research,
Communications 486(3): 726-731.
Zhu,
B.K., Fang, Y.M., Zhu, D., Christie, P., Ke, X. &
Zhu, Y.G. 2018. Exposure to nanoplastics disturbs the
gut microbiome in the soil oligochaete Enchytraeus crypticus. Environ. Pollut.
239: 408-415.
*Corresponding author; email: alfiah-h@fst.unair.ac.id
|