Sains Malaysiana 51(9)(2022): 2789-2802

http://doi.org/10.17576/jsm-2022-5109-05

 

Isolation and Characterisation of Plant Growth-Promoting Bacterial and Fungal Endophytes from Himalayan Yew (Taxus wallichiana) - An Economically Imperative Pant of Himalayas

(Pemencilan dan Pencirian Bakteria dan Kulat Endofit Penggalak-Pertumbuhan Tanaman daripada Himalayan Yew (Taxus wallichiana)-Tumbuhan Himalaya yang Penting daripada Segi Ekonomi)

 

SOFIA SHARIEF KHAN, VIJESHWAR VERMA & SHAFAQ RASOOL*

 

Faculty of Sciences, School of Biotechnology, Faculty of Sciences, Shri Mata Vaishno Devi University, Kakryal, Katra, Jammu and Kashmir 182320, India

 

Received: 29 August 2021/Accepted: 28 March 2022

 

Abstract

It is a known fact that the bacterial and fungal endophytes inhabit the plant tissues besides aiding in the better growth and health of the plants. The bark and leaves of Taxus wallichiana have drawn a lot of interest in recent years since they are the richest source of taxol, an anticancer drug. As it is a slow-growing tree that can only be regenerated via vegetative propagation, it has been classified as a critical rare species due to its extensive collection for medicinal and other purposes. Nonetheless, the use of endophytes as plant growth promoters is gaining much importance among environmentalists and agronomists because of their imperative role in crop production. Even then, there is hardly any information available regarding the growth-promoting endophytes isolated from bark and leaves associated with T. wallichiana commonly known as Himalayan Yew. Therefore, the present study was undertaken to isolate fungal and bacterial endophytes from T. wallichiana and to classify the growth-promoting properties of these endophytes. In total, seven fungal and ten bacterial endophytes were obtained from different parts of T. wallichiana. All of the isolated fungal and bacterial endophytes produced indole acetic acid while most of them also produced ammonia. Besides, the fungal and bacterial endophytes were also screened for antimicrobial and various enzymatic activities. Based on the above results, the two fungal endophytes were selected for their possible ability to promote seed growth. The results showed that the fungal endophytes isolated from T. wallichiana played an active role in increasing growth in other plant species and therefore, can be used as potential plant growth promoters.

 

Keywords: Antimicrobial activity; bacterial endophytes; fungal endophytes; plant growth-promoting endophytes (PGPE)

 

Abstrak

Adalah diketahui bahawa bakteria dan kulat endofit mendiami tisu tumbuhan serta membantu dalam tumbesaran dan kesihatan tumbuhan yang lebih baik. Kulit dan daun Taxus wallichiana telah menarik minat ramai sejak beberapa tahun kebelakangan ini kerana ia kaya dengantaxol, iaitu ubat antikanser. Memandangkan ia adalah pokok dengan tumbesaran yang perlahan dan hanya boleh dijana semula melalui pembiakan vegetatif, ia telah dikelaskan sebagai spesies langka yang kritikal kerana pengumpulannya dilakukan secara ekstensif untuk tujuan perubatan. Namun begitu, penggunaan endofit sebagai penggalak tumbesaran tumbuhan semakin penting dalam kalangan ahli alam sekitar dan ahli agronomi kerana peranan pentingnya dalam pengeluaran tanaman. Walaupun begitu, hampir tidak terdapat sebarang maklumat mengenai endofit penggalak tumbesaran yang diasingkan daripada kulit kayu dan daun yang dikaitkan dengan T. wallichiana yang juga dikenali sebagai Himalaya Yew. Oleh yang demikian, kajian ini telah dijalankan untuk mengasingkan endofit kulat dan bakteria daripada T. wallichiana dan pada masa yang sama, untuk mengelaskan sifat penggalak tumbesaran tanaman oleh endofit ini. Secara keseluruhan, tujuh kulat dan sepuluh bakteria endofit diperoleh daripada bahagian T. wallichiana yang berlainan. Kesemua kulat dan bakteria endofit yang dipencilkan menghasilkan asid asetik indol manakala kebanyakannya juga menghasilkan ammonia. Selain itu, kulat dan bakteria endofit juga disaring untuk aktiviti antimikrob dan pelbagai enzim. Berdasarkan hasil di atas, dua endofit kulat telah dipilih kerana keupayaan mereka dalam menggalakkan tumbesaran benih. Hasil menunjukkan bahawa kulat endofit yang diasingkan daripada T. wallichiana memainkan peranan aktif dalam meningkatkan tumbesaran spesies tumbuhan lain dan berpotensi untuk digunakan sebagai penggalak tumbesaran tumbuhan.

 

Kata kunci: Aktiviti antimikrob; bakteria endofit; endofit penggalak tumbesaran tumbuhan (PGPE); kulat endofit

 

References

Ababutain, I.M., Aldosary, S.K., Aljuraifani, A.A., Alghamdi, A.I., Alabdalall, A.H., Al-Khaldi, E.M., Aldakeel, S.A., Almandil, N.B., AbdulAzeez, S. & Borgio, J.F. 2021. Identification and antibacterial characterization of endophytic fungi from Artemisia sieberi. International Journal of Microbiology 2021: 6651020.

Adhikari, P. & Pandey, A. 2020. Bioprospecting plant growth promoting endophytic bacteria isolated from Himalayan yew (Taxus wallichiana Zucc.). Microbiological Research 239: 126536.

Adhikari, P. & Pandey, A. 2019. Phosphate solubilization potential of endophytic fungi isolated from Taxus wallichiana Zucc. roots. Rhizosphere 9: 2-9.

Adhikari, P. & Pandey, A. 2017. Taxus wallichiana Zucc. (Himalayan Yew) in antimicrobial perspective. Advances in Biotechnology and Microbiology 4(5): 555650.

Ali, S., Charles, T.C. & Glick, B.R. 2017. Endophytic phytohormones and their role in plant growth promotion. In Functional Importance of the Plant Microbiome, edited by Doty, S.L. New York: Springer. pp. 89-105.

Amer, G.A. & Utkhede, R.S. 2000. Development of formulations of biological agents for management of root rot of lettuce and cucumber. Canadian Journal of Microbiology 46(9): 809-816.

Ansari, M.W., Trivedi, D.K., Sahoo, R.K., Gill, S.S. & Tuteja, N. 2013. A critical review on fungi mediated plant responses with special emphasis to Piriformospora indica on improved production and protection of crops. Plant Physiology and Biochemistry 70: 403-410.

Ashkezari, S.J. & Fotouhifar, K.B. 2017. Diversity of endophytic fungi of common yew (Taxus baccata L.) in Iran. Mycological Progress 16(3): 247-256.

Audipudi, A., Chakicherla, B. & Bhore, S. 2017. Bacterial endophytes as biofertilizers and biocontrol agents for sustainable agriculture. Biotech Sustainability 1: 223-247.

Bhuju, S. & Gauchan, D.P.  2018. Taxus wallichiana (Zucc.), an endangered anti-cancerous plant: A review. International Journal of Research 5(21): 10-21.

Bi, Y., Zhang, Y. & Zou, H. 2018. Plant growth and their root development after inoculation of arbuscular mycorrhizal fungi in coal mine subsided areas. International Journal of Coal Science & Technology 5(1): 47-53.

Bilal, L., Asaf, S., Hamayun, M., Gul, H., Iqbal, A., Ullah, I., Lee, I.J. & Hussain, A. 2018. Plant growth promoting endophytic fungi Asprgillus fumigatus TS1 and Fusarium proliferatum BRL1 produce gibberellins and regulates plant endogenous hormones. Symbiosis 76(2): 117-127.

Bokhari, A., Essack, M., Lafi, F.F., Andres-Barrao, C., Jalal, R., Alamoudi, S., Razali, R., Alzubaidy, H., Shah, K.H., Siddique, S., Bajic, V.B. & Saad, M.M. 2019. Bioprospecting desert plant Bacillus endophytic strains for their potential to enhance plant stress tolerance. Scientific Reports 9(1): 18154.

Borah, A., Das, R., Mazumdar, R. & Thakur, D. 2019. Culturable endophytic bacteria of Camellia species endowed with plant growth promoting characteristics. Journal of Applied Microbiology 127(3): 825-844.

Cappuccino, J.C. & Sherman, N. 1992. Negative staining. In Microbiology: A Laboratory Manual. London: Pearson. pp. 125-179.

Celador-Lera, L., Jiménez-Gómez, A., Menéndez, E. & Rivas, R. 2018. Biofertilizers based on bacterial endophytes isolated from cereals: potential solution to enhance these crops. In Role of Rhizospheric Microbes in Soil, edited by Meena, V.S. Singapore: Springer. pp. 175-203.

Chadha, N., Mishra, M., Rajpal, K., Bajaj, R., Choudhary, D.K. & Varma, A. 2015. An ecological role of fungal endophytes to ameliorate plants under biotic stress. Archives of Microbiology 197(7): 869-881.

Chand, K., Shah, S., Sharma, J., Paudel, M.R. & Pant, B. 2020. Isolation, characterization, and plant growth-promoting activities of endophytic fungi from a wild orchid Vanda cristata. Plant Signaling and Behavior 15(5): 1744294.

Chen, Y.C., Eisner, J.D., Kattar, M.M., Rassoulian-Barrett, S.L., LaFe, K., Yarfitz,  S.L., Limaye, A.P. & Cookson, B.T. 2000. Identification of medically important yeasts using PCR-based detection of DNA sequence polymorphisms in the internal transcribed spacer 2 region of the rRNA genes. Journal of Clinical Microbiology 38(6): 2302-2310.

Collins, D.P. & Jacobsen, B.J. 2003. Optimizing a Bacillus subtilis isolate for biological control of sugar beet Cercospora leaf spot. Biological Control 26(2): 153-161.

Das, S., & Jha, L.K. 2018. Effect of different rooting media on root proliferation of Taxus BaccataL. stem cuttings. Current Agriculture Research Journal 6(1): 95-104.

Fatima, N., Kondratyuk, T.P., Park, E.J., Marler, L.E., Jadoon, M., Qazi, M.A., Mehboob Mirza, H., Khan, I., Atiq, N., Chang, L.C., Ahmed, S. & Pezzuto, J.M. 2016. Endophytic fungi associated with Taxus fuana (West Himalayan Yew) of Pakistan: potential bio-resources for cancer chemopreventive agents. Pharmaceutical Biology 54(11): 2547-2554.

Gashgari, R., Gherbawy, Y., Ameen, F. & Alsharari, S. 2016. Molecular characterization and analysis of antimicrobial activity of endophytic fungi from medicinal plants in Saudi Arabia. Jundishapur Journal of Microbiology 9(1): e26157.

Gauchan, D.P., Vélëz, H., Acharya, A., Östman, J.R., Lundén, K., Elfstrand, M. & García-Gil, M.R. 2021. Annulohypoxylon sp. strain MUS1, an endophytic fungus isolated from Taxus wallichiana Zucc., produces taxol and other bioactive metabolites. 3 Biotech 11(3): 152.

Glick, B.R. 2012. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica  2012: 963401.

Gordon, S.A. & Weber, R.P. 1951. Colorimetric estimation of indoleacetic acid. Plant Physiology 26(1): 192.

Halo, B.A., Khan, A.L., Waqas, M., Al-Harrasi, A., Hussain, J., Ali, L., Adnan, M. & Lee, I.J. 2015. Endophytic bacteria (Sphingomonas sp. LK11) and gibberellin can improve Solanum lycopersicum growth and oxidative stress under salinity. Journal of Plant Interactions 10(1): 117-125.

Hamayun, M., Hussain, A., Iqbal, A., Khan, S.A. & Lee, I.J. 2018. Endophytic fungus Aspergillus japonicus mediates host plant growth under normal and heat stress conditions. BioMed Research International 2018: 7696831.

Hassan, S.E.D. 2017. Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. Journal of Advanced Research 8(6): 687-695.

Husen, E. 2016. Screening of soil bacteria for plant growth promotion activities in vitro. Indonesian Journal of Agricultural Science 4(1): 27-31.

Ismail, M.A., Amin, M.A., Eid, A.M., Hassan, S.E.D., Mahgoub, H.A., Lashin, I., Abdelwahab, A.T., Azab, E., Gobouri, A.A., Elkelish, A. & Fouda, A. 2021. Comparative study between exogenously applied plant growth hormones versus metabolites of microbial endophytes as plant growth-promoting for Phaseolus vulgaris L. Cells 10(5): 1059.

Jayaraj, J., Radhakrishnan, N.V., Kannan, R., Sakthivel, K., Suganya, D., Venkatesan, S. & Velazhahan, R. 2005. Development of new formulations of Bacillus subtilis for management of tomato damping-off caused by Pythium aphanidermatum. Biocontrol Science and Technology 15(1): 55-65.

Jia, M., Chen, L., Xin, H.L., Zheng, C.J., Rahman, K., Han, T. & Qin, L.P. 2016. A friendly relationship between endophytic fungi and medicinal plants: A systematic review. Frontiers in Microbiology 7: 906.

Jorjani, M., Heydari, A., Zamanizadeh, H.R., Rezaee, S., Naraghi, L. & Zamzami, P. 2012. Controlling sugar beet mortality disease by application of new bioformulations. Journal of Plant Protection Research 52(3): 303-307.

Juyal, D., Thawani, V., Thaledi, S. & Joshi, M. 2014. Ethnomedical properties of Taxus wallichiana zucc. (Himalayan yew). Journal of Traditional and Complementary Medicine 4(3): 159-161.

Karthik, C., Oves, M., Thangabalu, R., Sharma, R., Santhosh, S.B. & Arulselvi, P.I. 2016. Cellulosimicrobium funkei-like enhances the growth of Phaseolus vulgaris by modulating oxidative damage under chromium (vi) toxicity. Journal of Advanced Research 7(6): 839-850.

Khan, A.L., Gilani, S.A., Waqas, M., Al-Hosni, K., Al-Khiziri, S., Kim, Y.H., Ali, L., Kang, S.M., Asaf, S., Shahzad, R. & Al-Harrasi, A. 2017. Endophytes from medicinal plants and their potential for producing indole acetic acid, improving seed germination and mitigating oxidative stress. Journal of Zhejiang University-Science B 18(2): 125-137.

Khan, A.L., Waqas, M., Khan, A.R., Hussain, J., Kang, S.M., Gilani, S.A., Hamayun, M., Shin, J.H., Kamran, M., Al-Harrasi, A., Yun, B.W. & Lee, I.J. 2013. Fungal endophyte Penicillium janthinellum LK5 improves growth of ABA-deficient tomato under salinity.World Journal of Microbiology and Biotechnology 29(11): 2133-2144.

Khan, A.R., Ullah, I., Waqas, M., Shahzad, R., Hong, S.J., Park, G.S., Jung, B.K., Lee, I.J. & Shin, J.H. 2015. Plant growth-promoting potential of endophytic fungi isolated from Solanum nigrum leaves. World Journal of Microbiology and Biotechnology 31(9): 1461-1466.

Khan, M.S., Gao, J., Munir, I., Zhang, M., Liu, Y., Xue, J. & Zhang, X. 2021. Characterization of endophytic fungi, Acremonium sp., from Lilium davidii and analysis of its antifungal and plant growth-promoting effects. BioMed Research International 2021: 9930210.

Kumar, M., Saxena, R. & Tomar, R.S. 2017. Endophytic microorganisms: Promising candidate as biofertilizer. In Microorganisms for Green Revolution, edited by     Panpatte, D.G., Jhala, Y.K., Vyas, R.V. & Shelat, H.N. Singapore: Springer. pp. 77-85.

Kumar, P., Singh, B., Thakur, V., Thakur, A., Thakur, N., Pandey, D. & Chand, D. 2019. Hyper-production of taxol from Aspergillus fumigatus, an endophytic fungus isolated from Taxus sp. of the Northern Himalayan region. Biotechnology Reports 24: e00395.

Li, X., Geng, X., Xie, R., Fu, L., Jiang, J., Gao, L. & Sun, J. 2016. The endophytic bacteria isolated from elephant grass (Pennisetum purpureum Schumach) promote plant growth and enhance salt tolerance of hybrid Pennisetum. Biotechnology for Biofuels 9(1): 190.

Liu, D., Coloe, S., Baird, R. & Pedersen, J. 1997. Molecular determination of dermatophyte fungi using the arbitrarily primed polymerase chain reaction. British Journal of Dermatology 137(3): 351-355.

Magaldi, S., Mata-Essayag, S., De Capriles, C.H., Pérez, C., Colella, M.T., Olaizola, C. & Ontiveros, Y. 2004. Well diffusion for antifungal susceptibility testing. International Journal of Infectious Diseases 8(1): 39-45.

Mbai, F.N., Magiri, E.N., Matiru, V.N., Nganga, J. & Nyambati, V.C.S. 2013. Isolation and characterization of bacterial root endophytes with potential to enhance plant growth from Kenyan Basmati rice. American International Journal of Contemporary Research 3(4): 25-40.

Murphy, B.R., Doohan, F.M. & Hodkinson, T.R. 2014. Yield increase induced by the fungal root endophyte Piriformospora indica in barley grown at low temperature is nutrient limited. Symbiosis 62(1): 29-39.

Nath, R., Sharma, G.D. & Barooah, M. 2015. Plant growth promoting endophytic fungi isolated from tea (Camellia sinensis) shrubs of Assam, India. Applied Ecology and Environmental Research 13(3): 877-891.

Ntabo, R.M., Nyamache, A.K., Lwande, W., Kabii, J. & Nonoh, J. 2018. Enzymatic activity of endophytic bacterial isolates from selected mangrove plants in Kenya. The Open Microbiology Journal 12(1): 354-363.

Pandey, A. & Yarzábal, L.A. 2019. Bioprospecting cold-adapted plant growth promoting microorganisms from mountain environments. Applied Microbiology and Biotechnology 103(2): 643-657.

Pandey, A., Nadeem, M. & Palni, L.M.S. 2002. Improvement in seed germination of Himalayan yew through simple soil treatments. Indian Journal of Forestry 25(2): 109-113.

Pansanit, A. & Pripdeevech, P. 2018. Antibacterial secondary metabolites from an endophytic fungus, Arthrinium sp. MFLUCC16-1053 isolated from Zingiber cassumunar. Mycology 9(4): 264-272.

Pappas, M.L., Liapoura, M., Papantoniou, D., Avramidou, M., Kavroulakis, N., Weinhold, A., Broufas, G.D. & Papadopoulou, K.K. 2018. The beneficial endophytic fungus Fusarium solani strain K Alters tomato responses against spider mites to the benefit of the plant. Frontiers in Plant Science 9: 1603.

Patil, M.G., Pagare, J., Patil, S.N. & Sidhu, A.K. 2015. Extracellular enzymatic activities of endophytic fungi isolated from various medicinal plants. International Journal of Current Microbiology and Applied Science 4(3): 1035-1042.

Petrini, O., Sieber, T.N., Toti, L. & Viret, O. 1993. Ecology, metabolite production, and substrate utilization in endophytic fungi. Natural Toxins 1(3): 185-196.

Potshangbam, M., Devi, S.I., Sahoo, D. & Strobel, G.A. 2017. Functional characterization of endophytic fungal community associated with Oryza sativa L. and Zea mays L. Frontiers in Microbiology 8: 325.

Puri, A., Padda, K.P. & Chanway, C.P. 2016. Seedling growth promotion and nitrogen fixation by a bacterial endophyte Paenibacillus polymyxa P2b-2R and its GFP derivative in corn in a long-term trial. Symbiosis 69(2): 123-129.

Ryan, R.P., Germaine, K., Franks, A., Ryan, D.J. & Dowling, D.N. 2008. Bacterial endophytes: Recent developments and applications. FEMS Microbiology Letters 278(1): 1-9.

Thomas, P. & Farjon, A. 2011. Taxus wallichiana. In The IUCN Red List of Threatened Species 2011. Gland: International Union for Conservation of Nature.

Tumangger, B.S., Nadilla, F., Baiduri, N. & Mardina, V. 2018. In vitro screening of endophytic fungi associated with mangroveas biofertilizer on the growth of black rice (Oryza sativa L."Cempo Ireng"). IOP Conference Series: Materials Science and Engineering 420(1): 012080.

Verma, V.C., Gond, S.K., Kumar, A., Kharwar, R.N. & Strobel, G. 2007. The endophytic mycoflora of bark, leaf, and stem tissues of Azadirachta indica A. Juss (Neem) from Varanasi (India). Microbial Ecology 54(1): 119-125.

Wani, Z.A., Mirza, D.N., Arora, P. & Riyaz-Ul-Hassan, S. 2016. Molecular phylogeny, diversity, community structure, and plant growth promoting properties of fungal endophytes associated with the corms of saffron plant: An insight into the microbiome of Crocus sativus Linn. Fungal Biology 120(12): 1509-1524.

Xia, Y., Sahib, M.R., Amna, A., Opiyo, S.O., Zhao, Z. & Gao, Y.G. 2019. Culturable endophytic fungal communities associated with plants in organic and conventional farming systems and their effects on plant growth. Scientific Reports 9(1): 1-10.

Zaiyou, J., Li, M. & Xiqiao, H. 2017. An endophytic fungus efficiently producing paclitaxel isolated from Taxus wallichiana var. mairei. Medicine 96(27): e7406.

  *Corresponding author; email: shafaq.rasool@smvdu.ac.in

 

 

 

previous