Sains Malaysiana 51(5)(2022): 1317-1324

http://doi.org/10.17576/jsm-2022-5105-04

 

Growth and Anatomical Adaptations in Response to Salinity Stress in Cucurbita moschata Duchesne ‘Butternut’ (Cucurbitaceae)

(Adaptasi Pertumbuhan dan Anatomi Cucurbita moschata Duchesne ‘Butternut’ (Cucurbitaceae) dalam Gerak Balas terhadap Tekanan Kemasinan)

 

WORASITIKULYA TARATIMA1,*, SUNUNTA SUDJAI1 & PITAKPONG MANEERATTANARUNGROJ2

 

1Salt Tolerance Rice Research Group, Department of Biology, Faculty of Science,
   Khon Kaen University, Khon Kaen 40002, Thailand

2Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand

 

Received: 19 February 2021/ Accepted: 14 October 2021

 

Abstract

Pumpkin or squash is an economically important crop that is moderately sensitive to salinity but how its growth is affected by soil salinity is poorly understood. Salinity stress on physiological and anatomical traits of Cucurbita moschata ‘Butternut’ was investigated under hydroponic culture using Hoagland’s solution with various NaCl concentrations (0, 25, 50, 75, 100, and 150 mM) for four weeks. The results showed that pumpkin growth characters decreased after cultured in various NaCl concentrations. Leaf number, leaf width, leaf length, root number, stem height, stem diameter, green intensity in terms of SPAD units, chlorophyll fluorescence (Fv’/Fm’, Fv/Fm), total chlorophyll, chlorophyll a and chlorophyll b contents significantly (p < 0.05) decreased after culture in various NaCl concentrations. Salinity stress impacted fiber layer thickness, vascular bundle size and vessel diameter of treated plants but did not affect cuticle thickness. Physiological and anatomical traits significantly correlated with salinity gradients, except for chlorophyll b and chlorophyll fluorescence, in both light and dark condition. Results provide significant data to improve the understanding of adaptation mechanisms of tolerant pumpkin cultivars under salinity stress condition.

 

Keywords: Chlorophyll content; free-hand sectioning; pumpkin; salinity; stem anatomy

 

Abstrak

Labu adalah tanaman yang penting daripada segi ekonomi serta agak sensitif terhadap kemasinan tetapi bagaimana pertumbuhannya dipengaruhi oleh kemasinan tanah masih kurang difahami. Tekanan kemasinan pada ciri fisiologi dan anatomi Cucurbita moschata ‘Butternut’ dikaji dalam kultur hidroponik menggunakan larutan Hoagland dengan pelbagai kepekatan NaCl (0, 25, 50, 75, 100 dan 150 mM) selama empat minggu. Hasil kajian menunjukkan bahawa pertumbuhan labu menurun setelah dikultur dalam pelbagai kepekatan NaCl. Bilangan daun, lebar daun, panjang daun, nombor akar, ketinggian batang, diameter batang, keamatan hijau daun dari segi unit SPAD, pendarfluor klorofil (Fv'/Fm', Fv/Fm), jumlah klorofil, klorofil a dan kandungan klorofil b menurun dengan ketara (p<0.05) selepas dikulturkan dalam pelbagai kepekatan NaCl. Tekanan kemasinan mempengaruhi ketebalan lapisan serat, saiz berkas vaskular dan diameter salur tanaman yang dirawat tetapi tidak mempengaruhi ketebalan kutikul. Ciri fisiologi dan anatomi berkorelasi dengan kepekatan kemasinan, kecuali klorofil b dan pendarfluor klorofil, dalam keadaan cahaya dan gelap. Keputusan memberikan data yang signifikan untuk meningkatkan pemahaman mekanisme penyesuaian kultivar labu yang toleran terhadap keadaan tekanan kemasinan.

 

Kata kunci: Anatomi batang; kandungan klorofil; kemasinan; labu; pembahagian bebas tangan

 

REFERENCES

Akcin, A.T., Akcin, A. & Yalcin, E. 2014. Anatomical adaptations to salinity in Spergularia marina (Caryophyllaceae) from Turkey. Proceedings of the National Academy of Sciences, India - Section B: Biological Sciences 85(2): 625-634.

Albuquerque, J.R.T., Sa, F.V.S., Oliveira, F.A., Paiva, E.P., Araujo, E.B.G. & Souto, L.S. 2016. Crescimento inicial e tolerancia de cultivares de pepino sob estress salino. Revista Brasileira de Agricultura Irrigada 10(2): 486-495.

Atabayeva, S., Nurmahanova, A., Minocha, S., Ahmetova, A., Kenzhebayeva, S., Aidosova, S., Nurzhanova, A., Zhardamalieva, A., Asrandina, S., Alybayeva, R. & Li, T. 2013. The effect of salinity on growth and anatomical attributes of barley seedling (Hordeum vulgare L.). African Journal of Biotechnology 12(18): 2366-2377.

Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24(1): 1-15.

Balkaya, A., Songul Yıldız, S., Horuz, A. & Doğru, M.S. 2016. Effects of salt stress on vegetative growth parameters and ion accumulations in Cucurbit rootstock genotypes. Ekin Journal of Crop Breeding and Genetics 2(2): 11-24.

Bischoff, J. 1999. Salt/salinity Tolerance of Common Horticultural Crops of South Dakota: Garden and Vegetable/Woody Fruit Crops.  SDSU Extension Fact Sheet. p. 904.

Bose, J., Munns, R., Shabala, S., Gilliham, M., Pogson, B. & Tyerman, S.D. 2017. Chloroplast function and ion regulation in plants growing on saline soils: Lessons from halophytes. Journal of Experimental Botany 68(12): 3129-3143.

Boughalleb, F., Abdellaoui, R., Nbiba, N. & Mahmoudi, M. 2017. Effect of NaCl stress on physiological, antioxidant enzymes and anatomical responses of Astragalus gombiformis. Biologia 72(12): 1454-1466.

Brito, M.E.B., Fernandes, P.D., Gheyi, H.R., Meto, A.S., Aoares Filho, W.S. & Santos, R.T. 2014. Sensitibilidade a salinidade de hibridos trifoliados e outros porta-enxertos de citros. Revista Caatinga 27(1): 17-27.

Dolatabadian, A., Seyed Ali Mohammad, M. & Faezeh, G. 2011. Effect of salinity on growth, xylem structure and anatomical characteristics of soybean. Notulae Scientia Biologicae 3(1): 41-45.

Farhana, S., Rashid, P. & Karmoker, J.L. 2014. Salinity induced anatomical changes in maize (Zea mays L. cv. Bari-7). Dhaka University Journal of Biological Sciences 23(1): 93-95.

Feng, W., Kita, D., Peaucelle, A., Cartwright, H.N., Doan, V., Duan, Q., Liu, M.C., Maman, J., Steinhorst, L., Schmitz-Thom, I., Yvon, R., Kudla, J., Wu, H., Cheung, Y.A. & Dinneny, R.J. 2018. The FERONIA receptor kinase maintains cell-wall integrity during salt stress through Ca2+ signaling. Current Biology 28(5): 666-675.

FAO. 2014. Food and Agriculture Organization of the United Nations (FAO).  http://www.fao.org. Accessed on 10 January 2020.

Gong, H.D., Wang, Z.G., Si, T.W., Zhou, Y., Liu, Z. & Jia, J. 2018.  Effects of salt stress on photosynthetic pigments and activity of ribulose-1,5-bisphosphate carboxylase/ oxygenase in Kalidium foliatum. Russian Journal of Plant Physiology 65(1): 98-103.

Grigore, M.N. & Toma, C. 2007. Histo-anatomical strategies of Chenopodiaceae halophytes: Adaptive, ecological and evolutionary implications. WSEAS Transactions on Biology and Biomedicine 4(12): 204-218.

Hameed, M., Ashraf, M., Naz, N. & Al-Qurainy, F. 2010 Anatomical adaptations of Cynodon dactylon (L.) Pers., from the salt range Pakistan, to salinity stress. I. Root and stem anatomy. Pakistan Journal of Botany 42(1): 279-289.

Hameed, M., Nawaz, T., Aahraf, M., Naz, N., Batool, R., Ahmad, A.S.M. & Riaz, A. 2013. Physioanatomical adaptations in response to salt stress in Sporobolus arabicus (Poaceae) from the Salt Range, Pakistan. Turkish Journal of Botany 37(4): 715-724.

Hampson, C.R. & Simpson, G.M. 1990. Effects of temperature, salt and osmotic potential on early growth of wheat (Triticum aestivum) II. Early seedling growth. Canadian Journal of Botany 68(3): 529-532.

Hussain, S., Jun-Hua, Z., Chu, Z., Lian-Feng, Z., Xiao-Chuang, C., Heng-Miao, Y., James, B.A., Ji-Jie, H. & Qian-Yu, J. 2017. Effects of salt stress on rice growth, development characteristics, and the regulating ways: A review. Journal of Integrative Agriculture 16(11): 2357-2374.

Ito, H., Ohtsuka, T. & Tanaka, A. 1996. Conversion of chlorophyll b to chlorophyll a via 7-hydroxymethyl chlorophyll. Journal of Biological Chemistry 271(3): 1475-1479.

Johansen, A.D. 1940. Plant Microtechnique. New York; London: McGraw-Hill Book Company, Inc. pp. 1-523.

Kosma, D.K. & Jenks, M.A. 2007. Eco-physiological and molecular-genetic determinants of plant cuticle function in drought and salt stress tolerance. In Advances in Molecular Breeding toward Drought and Salt Tolerant Crops, edited by Jenks, M.A., Hasegawa, P.M. & Jain, S.M. Dordrecht: Springer Netherlands. pp. 91-120.

Kurum, R., Ulukapi, K., Aydinsakir, K. & Onus, N.A. 2013. The influence of salinity on seedling growth of some pumpkin varieties used as rootstock. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 41(1): 219-225.

Martins, D.C., Ribeiro, M.S.S., Souza Neta, M.L., Silva, R.T., Gomes, L.P., Guedes, R.A.A. & Oliveira, F.A. 2013. Tolerância de cultivares da melancia à salinidade da água de irrigação. Agropecuária Científica no Semiárido 8(3): 62-68.

Okon, G.O. 2019. Effect of salinity on physiological processes in plants. In Microorganisms in Saline Environments: Strategies and Functions, edited by, Giri, B. & Varma, A. Switzerland: Springer. pp. 237-262.

Oliveira, F.A. 2013. Tolerância de cultivares da melancia à salinidade da água de irrigação. Agropecuária Científica no Semiárido 8(3): 62-68.

Oliveira, F.A., Sá, F.V.S., Paiva, E.P., Araújo, E.B.G., Souto, L.S., Andrade, R.A. & Silva, M.K.N. 2015. Emergência e crescimento inicial de plântulas de beterraba cv. Chata do Egito sob estresse salino. Agropecuária Científica no Semiárido 11(1): 1-6.

Oliveira, F.A., Martins, D.C., Oliveira, M.K.T., Souza Neta, M.L., Ribeiro, M.S.S. & Silva, R.T. 2014. Desenvolvimento inicial de cultivares de abóboras e morangas submetidas ao estresse salino. Agro@mbiente On-line 8(2): 222-229.

Omovbude, S. & Hamadina, I.E. 2018. Effect of sodium chloride on seed germination and seedling growth of yellow fluted pumpkin (Telfairia occidentalis) in the Niger Delta, Nigeria. Advancements in Life Sciences 8(1): 26-31.

Parida, A.K., Veerabathini, S.K., Kumari, A. & Agarwal, P.K. 2016. Physiological, anatomical and metabolic implications of salt tolerance in the halophyte Salvadora persica under hydroponic culture condition. Frontiers in Plant Science 7(251): 1-18.

Resende, G.M., Borges, R.M.E. & Gonçalves, N.P.S. 2013. Produtividade da cultura da abóbora em diferentes densidades de plantio no Vale do São Francisco. Horticultura Brasileira 31(3): 504-508.

Salehi, R., Kashi, A. & Javanpour, R. 2008. Effect of grafting on survival of cucumber, watermelon and melon plants grafted onto Cucurbita spp. rootstocks by hole insertion grafting. Acta Horticulturae 771: 141-144.

Samuels, A.L., Kunst, L. & Jetter, R. 2008. Sealing plant surfaces: Cuticular wax formation by epidermal cells. Annual Review of Plant Biology 59: 683-707.

Sellami, S., Le Hir, R., Thorpe, R.M., Vilaine, F., Wolff, N., Brini, F. & Dinant, S. 2019. Salinity effects on sugar homeostasis and vascular anatomy in the stem of the Arabidopsis thaliana Inflorescence. International Journal of Molecular Sciences 20(13): 1-19.

Sevengor, S., Yasar, F., Kusvuran, S. & Ellialtioglu, S. 2011. The effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidative enzymes of pumpkin seedling. African Journal of Agricultural Research 6(21): 4920-4924.

Tang, Y.Y., Yuan, Y.H., Shu, S. & Guo, S. 2018. Regulatory mechanism of NaCl stress on photosynthesis and antioxidant capacity mediated by transglutaminase in cucumber (Cucumis sativus L.) seedlings. Scientia Horticulturae 235: 294-306.

Taratima, W., Ritmaha, T., Jongrungklang, N., Raso, S. & Maneerattanarungroj, P. 2019. Leaf anatomical responses to drought stress condition in hybrid sugarcane leaf (Saccharum
officinarum
‘KK3’). Malaysian Applied Biology 48(3): 180-188.

Taratima, W., Ritmaha, T., Jongrungklang, N., Maneerattanarungroj, P. & Kunpratum, N. 2020. Effect of stress on the leaf anatomy of sugarcane cultivars with different drought tolerance (Saccharum officinarum, Poaceae). Revista de Biología Tropical 68(4): 1159-1170.

Theerakulpisut, P. 2016.  Plant Physiology under Salt Stress. Khon Kaen, Thailand: Khon Kaen Karnpim.

Venturas, M.D., Sperry, J.S. & Hacke, U.G. 2017. Plant xylem hydraulics: What we understand,
current research, and future challenges. Journal of Integrative Plant Biology 59(6): 356
-389.

Younis, A., Riaz, A., Ahmed, I., Siddique, I.M., Tariq, U., Hameed, M. & Nadeem, M. 2014. Anatomical changes induced by NaCl stress in root and stem of Gazania harlequin L. Communications in Agricultural and Applied Biological Sciences 2(3): 8-14.

Zhang, F., Zhang, K., Du, C., Li, J., Xing, Y.X., Yang, L. & Li, Y.L. 2015. Effect of drought stress on anatomical structure and chloroplast ultrastructure in leaves of sugar cane. Sugar Tech 17(1): 41-48.

Zhao, H., Liang, H., Chu, Y., Sun, C., Wei, N., Yang, M. & Zheng, C. 2019. Effects of salt stress on chlorophyll fluorescence and the antioxidant system in Ginkgo biloba L. seedlings. Hortscience 54(12): 2125-2133.

Zhao, C., Zhang, H., Song, C., Zhu, K.K. & Shabala, S. 2020. Mechanisms of plant responses and adaptation to soil salinity. The Innovation 1(1): 1-41.

Zhong, M., Wang, Y., Zhang, Y., Shu, S., Sun, J. & Guo, S. 2019. Overexpression of transglutaminase from cucumber in Tobacco increases salt tolerance through regulation of photosynthesis. International Journal of Molecular Science 20(4): 1-17.

Zhu, J., Bie, Z., Huang, Y. & Han, X.Y. 2008. Effect of grafting on the growth and ion concentrations of cucumber seedlings under NaCl stress. Soil Science and Plant Nutrition 54(6): 895-902.

 

*Corresponding author; email: worasitikulya@gmail.com

 

 

previous