Sains Malaysiana 51(5)(2022): 1317-1324
http://doi.org/10.17576/jsm-2022-5105-04
Growth and Anatomical Adaptations in
Response to Salinity Stress in Cucurbita moschata Duchesne ‘Butternut’
(Cucurbitaceae)
(Adaptasi
Pertumbuhan dan Anatomi Cucurbita moschata Duchesne ‘Butternut’
(Cucurbitaceae) dalam Gerak Balas terhadap Tekanan
Kemasinan)
WORASITIKULYA
TARATIMA1,*, SUNUNTA
SUDJAI1 & PITAKPONG MANEERATTANARUNGROJ2
1Salt Tolerance Rice Research
Group, Department of Biology, Faculty of Science,
Khon Kaen University, Khon Kaen 40002,
Thailand
2Faculty of Veterinary Medicine,
Khon Kaen University, Khon Kaen 40002, Thailand
Received: 19 February 2021/ Accepted: 14
October 2021
Abstract
Pumpkin
or squash is an economically important crop that is moderately sensitive to
salinity but how its growth is affected by soil salinity is poorly understood.
Salinity stress on physiological and anatomical traits of Cucurbita moschata ‘Butternut’ was investigated under hydroponic culture using Hoagland’s solution
with various NaCl concentrations (0, 25, 50, 75, 100, and 150 mM) for four weeks. The
results showed that pumpkin growth characters decreased after cultured in
various NaCl concentrations. Leaf number, leaf width, leaf length, root number,
stem height, stem diameter, green intensity in terms of SPAD units, chlorophyll
fluorescence (Fv’/Fm’, Fv/Fm), total chlorophyll, chlorophyll a and chlorophyll
b contents significantly (p < 0.05) decreased after culture in
various NaCl concentrations. Salinity stress impacted fiber layer thickness,
vascular bundle size and vessel diameter of treated plants but did not affect
cuticle thickness. Physiological and anatomical traits significantly correlated
with salinity gradients, except for chlorophyll b and chlorophyll fluorescence,
in both light and dark condition. Results provide significant data to improve
the understanding of adaptation mechanisms of tolerant pumpkin cultivars under
salinity stress condition.
Keywords:
Chlorophyll content; free-hand sectioning; pumpkin; salinity; stem anatomy
Abstrak
Labu adalah tanaman yang penting daripada segi
ekonomi serta agak sensitif terhadap kemasinan tetapi bagaimana pertumbuhannya
dipengaruhi oleh kemasinan tanah masih kurang difahami. Tekanan kemasinan pada
ciri fisiologi dan anatomi Cucurbita moschata ‘Butternut’ dikaji dalam
kultur hidroponik menggunakan larutan Hoagland dengan pelbagai kepekatan NaCl
(0, 25, 50, 75, 100 dan 150 mM) selama empat minggu. Hasil kajian menunjukkan
bahawa pertumbuhan labu menurun setelah dikultur dalam pelbagai kepekatan NaCl.
Bilangan daun, lebar daun, panjang daun, nombor akar, ketinggian batang,
diameter batang, keamatan hijau
daun dari segi unit SPAD, pendarfluor klorofil (Fv'/Fm', Fv/Fm), jumlah
klorofil, klorofil a dan kandungan klorofil b menurun dengan ketara (p<0.05)
selepas dikulturkan dalam pelbagai kepekatan NaCl. Tekanan kemasinan
mempengaruhi ketebalan lapisan serat, saiz berkas vaskular dan diameter salur
tanaman yang dirawat tetapi tidak mempengaruhi ketebalan kutikul. Ciri fisiologi
dan anatomi berkorelasi dengan kepekatan kemasinan, kecuali klorofil b dan
pendarfluor klorofil, dalam keadaan cahaya dan gelap. Keputusan memberikan data yang signifikan
untuk meningkatkan pemahaman mekanisme penyesuaian kultivar labu yang toleran
terhadap keadaan tekanan kemasinan.
Kata kunci: Anatomi batang; kandungan
klorofil; kemasinan; labu; pembahagian bebas tangan
REFERENCES
Akcin, A.T., Akcin, A. & Yalcin, E.
2014. Anatomical adaptations to salinity in Spergularia marina (Caryophyllaceae) from Turkey. Proceedings of the National Academy of
Sciences, India - Section B: Biological Sciences 85(2): 625-634.
Albuquerque, J.R.T., Sa, F.V.S., Oliveira,
F.A., Paiva, E.P., Araujo, E.B.G. & Souto, L.S. 2016. Crescimento inicial e
tolerancia de cultivares de pepino sob estress salino. Revista Brasileira de Agricultura Irrigada 10(2):
486-495.
Atabayeva, S., Nurmahanova, A., Minocha,
S., Ahmetova, A., Kenzhebayeva, S., Aidosova, S., Nurzhanova, A.,
Zhardamalieva, A., Asrandina, S., Alybayeva, R. & Li, T. 2013. The effect
of salinity on growth and anatomical attributes of barley seedling (Hordeum
vulgare L.). African Journal of Biotechnology 12(18): 2366-2377.
Arnon, D.I. 1949. Copper enzymes in
isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant
Physiology 24(1): 1-15.
Balkaya, A., Songul Yıldız, S.,
Horuz, A. & Doğru, M.S. 2016. Effects of salt stress on vegetative
growth parameters and ion accumulations in Cucurbit rootstock genotypes. Ekin
Journal of Crop Breeding and Genetics 2(2): 11-24.
Bischoff, J. 1999. Salt/salinity Tolerance of Common Horticultural Crops of South Dakota: Garden and Vegetable/Woody Fruit Crops. SDSU Extension Fact Sheet. p. 904.
Bose, J., Munns, R., Shabala, S.,
Gilliham, M., Pogson, B. & Tyerman, S.D. 2017. Chloroplast function and ion
regulation in plants growing on saline soils: Lessons from halophytes. Journal
of Experimental Botany 68(12): 3129-3143.
Boughalleb, F., Abdellaoui, R., Nbiba, N.
& Mahmoudi, M. 2017. Effect of NaCl stress on physiological, antioxidant enzymes
and anatomical responses of Astragalus gombiformis. Biologia 72(12): 1454-1466.
Brito, M.E.B., Fernandes, P.D., Gheyi,
H.R., Meto, A.S., Aoares Filho, W.S. & Santos, R.T. 2014. Sensitibilidade a
salinidade de hibridos trifoliados e outros porta-enxertos de citros. Revista
Caatinga 27(1): 17-27.
Dolatabadian, A., Seyed Ali Mohammad, M.
& Faezeh, G. 2011. Effect of salinity on growth, xylem structure and
anatomical characteristics of soybean. Notulae Scientia Biologicae 3(1):
41-45.
Farhana, S., Rashid, P. & Karmoker,
J.L. 2014. Salinity induced anatomical changes in maize (Zea mays L. cv.
Bari-7). Dhaka University Journal of Biological Sciences 23(1): 93-95.
Feng, W., Kita, D., Peaucelle, A.,
Cartwright, H.N., Doan, V., Duan, Q., Liu, M.C., Maman, J., Steinhorst, L.,
Schmitz-Thom, I., Yvon, R., Kudla, J., Wu, H., Cheung, Y.A. & Dinneny, R.J.
2018. The FERONIA receptor kinase maintains cell-wall integrity during salt
stress through Ca2+ signaling. Current Biology 28(5): 666-675.
FAO. 2014. Food and Agriculture
Organization of the United Nations (FAO). http://www.fao.org. Accessed on 10 January 2020.
Gong, H.D., Wang, Z.G., Si, T.W., Zhou,
Y., Liu, Z. & Jia, J. 2018. Effects
of salt stress on photosynthetic pigments and activity of ribulose-1,5-bisphosphate
carboxylase/ oxygenase in Kalidium foliatum. Russian Journal of Plant
Physiology 65(1): 98-103.
Grigore, M.N. & Toma, C. 2007.
Histo-anatomical strategies of Chenopodiaceae halophytes: Adaptive, ecological and
evolutionary implications. WSEAS Transactions on Biology and Biomedicine 4(12): 204-218.
Hameed, M., Ashraf, M., Naz, N. &
Al-Qurainy, F. 2010 Anatomical adaptations of Cynodon dactylon (L.)
Pers., from the salt range Pakistan, to salinity stress. I. Root and stem
anatomy. Pakistan Journal of Botany 42(1): 279-289.
Hameed, M., Nawaz, T., Aahraf, M., Naz,
N., Batool, R., Ahmad, A.S.M. & Riaz, A. 2013. Physioanatomical adaptations
in response to salt stress in Sporobolus arabicus (Poaceae) from the
Salt Range, Pakistan. Turkish Journal of Botany 37(4): 715-724.
Hampson, C.R. & Simpson, G.M. 1990.
Effects of temperature, salt and osmotic potential on early growth of wheat (Triticum
aestivum) II. Early seedling growth. Canadian Journal of Botany 68(3):
529-532.
Hussain, S., Jun-Hua, Z., Chu, Z., Lian-Feng, Z., Xiao-Chuang, C., Heng-Miao, Y., James, B.A., Ji-Jie, H. & Qian-Yu, J. 2017. Effects of salt stress
on rice growth, development characteristics, and the regulating ways: A review. Journal of Integrative Agriculture 16(11): 2357-2374.
Ito, H., Ohtsuka, T. & Tanaka, A.
1996. Conversion of chlorophyll b to chlorophyll a via 7-hydroxymethyl
chlorophyll. Journal of Biological Chemistry 271(3): 1475-1479.
Johansen, A.D. 1940. Plant
Microtechnique. New York; London: McGraw-Hill Book Company, Inc. pp. 1-523.
Kosma, D.K. & Jenks, M.A. 2007.
Eco-physiological and molecular-genetic determinants of plant cuticle function
in drought and salt stress tolerance. In Advances in Molecular Breeding
toward Drought and Salt Tolerant Crops, edited by Jenks, M.A., Hasegawa,
P.M. & Jain, S.M. Dordrecht: Springer
Netherlands. pp. 91-120.
Kurum, R., Ulukapi, K., Aydinsakir, K.
& Onus, N.A. 2013. The influence of salinity on seedling growth of some
pumpkin varieties used as rootstock. Notulae Botanicae Horti Agrobotanici
Cluj-Napoca 41(1): 219-225.
Martins, D.C., Ribeiro, M.S.S., Souza
Neta, M.L., Silva, R.T., Gomes, L.P., Guedes, R.A.A. & Oliveira, F.A. 2013.
Tolerância de cultivares da melancia à salinidade da água de irrigação. Agropecuária
Científica no Semiárido 8(3): 62-68.
Okon, G.O. 2019. Effect of salinity on
physiological processes in plants. In Microorganisms in Saline Environments:
Strategies and Functions, edited by, Giri, B. & Varma, A.
Switzerland: Springer. pp. 237-262.
Oliveira, F.A. 2013. Tolerância de
cultivares da melancia à salinidade da água de irrigação. Agropecuária
Científica no Semiárido 8(3): 62-68.
Oliveira, F.A., Sá, F.V.S., Paiva, E.P.,
Araújo, E.B.G., Souto, L.S., Andrade, R.A. & Silva, M.K.N. 2015. Emergência
e crescimento inicial de plântulas de beterraba cv. Chata do Egito sob estresse
salino. Agropecuária Científica no Semiárido 11(1): 1-6.
Oliveira, F.A., Martins, D.C., Oliveira,
M.K.T., Souza Neta, M.L., Ribeiro, M.S.S. & Silva, R.T. 2014.
Desenvolvimento inicial de cultivares de abóboras e morangas submetidas ao
estresse salino. Agro@mbiente On-line 8(2): 222-229.
Omovbude, S. & Hamadina, I.E. 2018.
Effect of sodium chloride on seed germination and seedling growth of yellow
fluted pumpkin (Telfairia occidentalis) in the Niger Delta, Nigeria. Advancements
in Life Sciences 8(1): 26-31.
Parida, A.K., Veerabathini, S.K., Kumari,
A. & Agarwal, P.K. 2016. Physiological, anatomical and metabolic
implications of salt tolerance in the halophyte Salvadora persica under
hydroponic culture condition. Frontiers in Plant Science 7(251): 1-18.
Resende, G.M., Borges, R.M.E. &
Gonçalves, N.P.S. 2013. Produtividade da cultura da abóbora em diferentes
densidades de plantio no Vale do São Francisco. Horticultura Brasileira 31(3): 504-508.
Salehi, R., Kashi, A. & Javanpour, R.
2008. Effect of grafting on survival of cucumber, watermelon and melon plants
grafted onto Cucurbita spp. rootstocks by hole insertion grafting. Acta
Horticulturae 771: 141-144.
Samuels, A.L., Kunst, L. & Jetter, R.
2008. Sealing plant surfaces: Cuticular
wax formation by epidermal cells. Annual Review of Plant Biology 59: 683-707.
Sellami, S., Le Hir, R., Thorpe, R.M.,
Vilaine, F., Wolff, N., Brini, F. & Dinant, S. 2019. Salinity effects on
sugar homeostasis and vascular anatomy in the stem of the Arabidopsis
thaliana Inflorescence. International Journal of Molecular Sciences 20(13): 1-19.
Sevengor, S., Yasar, F., Kusvuran, S.
& Ellialtioglu, S. 2011. The effect of salt stress on growth, chlorophyll
content, lipid peroxidation and antioxidative enzymes of pumpkin seedling. African
Journal of Agricultural Research 6(21): 4920-4924.
Tang, Y.Y., Yuan, Y.H., Shu, S. & Guo,
S. 2018. Regulatory mechanism of NaCl stress on photosynthesis and antioxidant
capacity mediated by transglutaminase in cucumber (Cucumis sativus L.)
seedlings. Scientia Horticulturae 235: 294-306.
Taratima, W., Ritmaha, T., Jongrungklang,
N., Raso, S. & Maneerattanarungroj, P. 2019. Leaf anatomical responses to
drought stress condition in hybrid sugarcane leaf (Saccharum
officinarum ‘KK3’). Malaysian Applied Biology 48(3): 180-188.
Taratima, W., Ritmaha, T., Jongrungklang,
N., Maneerattanarungroj, P. & Kunpratum, N. 2020. Effect of stress on the
leaf anatomy of sugarcane cultivars with different drought tolerance (Saccharum
officinarum, Poaceae). Revista de Biología Tropical 68(4):
1159-1170.
Theerakulpisut, P. 2016. Plant Physiology under Salt Stress. Khon
Kaen, Thailand: Khon Kaen Karnpim.
Venturas, M.D., Sperry, J.S. & Hacke,
U.G. 2017. Plant xylem hydraulics: What we understand,
current research, and future challenges. Journal of Integrative Plant
Biology 59(6): 356-389.
Younis, A., Riaz, A., Ahmed, I., Siddique,
I.M., Tariq, U., Hameed, M. & Nadeem, M. 2014. Anatomical changes induced by
NaCl stress in root and stem of Gazania harlequin L. Communications
in Agricultural and Applied Biological Sciences 2(3): 8-14.
Zhang, F., Zhang, K., Du, C., Li, J., Xing, Y.X.,
Yang, L. & Li, Y.L. 2015. Effect of drought stress on anatomical structure
and chloroplast ultrastructure in leaves of sugar cane. Sugar Tech 17(1): 41-48.
Zhao, H., Liang, H., Chu, Y., Sun, C.,
Wei, N., Yang, M. & Zheng, C. 2019. Effects of salt stress on chlorophyll
fluorescence and the antioxidant system in Ginkgo biloba L. seedlings. Hortscience 54(12): 2125-2133.
Zhao, C., Zhang, H., Song, C., Zhu, K.K.
& Shabala, S. 2020. Mechanisms of plant responses and adaptation to soil
salinity. The Innovation 1(1): 1-41.
Zhong, M., Wang, Y., Zhang, Y., Shu, S.,
Sun, J. & Guo, S. 2019. Overexpression of transglutaminase from cucumber in
Tobacco increases
salt tolerance through regulation of photosynthesis. International Journal
of Molecular Science 20(4): 1-17.
Zhu, J., Bie, Z., Huang, Y. & Han,
X.Y. 2008. Effect of grafting on the growth and ion concentrations of cucumber
seedlings under NaCl stress. Soil Science and Plant Nutrition 54(6): 895-902.
*Corresponding author; email:
worasitikulya@gmail.com
|