Sains Malaysiana 51(12)(2022):
4125-4144
http://doi.org/10.17576/jsm-2022-5112-20
Numerical Approach for Delay Volterra Integro-Differential Equation
(Pendekatan Berangka Bagi Penyelesaian Persamaan Pembezaan Lengah-Kamilan Volterra)
NUR AUNI
BAHARUM1, ZANARIAH ABDUL MAJID1,2,*,
NORAZAK SENU1,2 & HALIZA ROSALI1,2
1Institute for Mathematical
Research, Universiti Putra Malaysia, 43400 UPM
Serdang, Selangor Darul Ehsan, Malaysia
2Department of Mathematics and Statistics, Faculty
of Science, Universiti Putra Malaysia, 43400 UPM
Serdang, Selangor Darul Ehsan, Malaysia
Received:
12 May 2022/Accepted: 29 August 2022
Abstract
The delay integro-differential equation for the Volterra type has
been solved by using the two-point multistep block (2PBM) method with constant
step-size. The proposed block method of order three is formulated using Taylor
expansion and will simultaneously approximate the numerical solution at two
points. The 2PBM method is developed by combining the predictor and corrector
formulae in the PECE mode. The predictor formulae are explicit, while the
corrector formulae are implicit. The algorithm for the approximate solutions
were constructed and analyzed using the 2PBM method
with Newton-Cotes quadrature rules. This paper focused on constant and
pantograph delay types, and the previous values are used to interpolate the
delay solutions. Moreover, the studies also carried out on the stability
analysis of the proposed method. Some numerical results are tested to validate
the competency of the multistep block method with quadrature rule approach.
Keywords: Multistep
block; Newton-Cotes rule; Volterra delay integro-differential
equation
Abstrak
Persamaan pembezaan lengah kamilan bagi jenis Volterra telah diselesaikan menggunakan kaedah blok berbilang langkah dua titik (2PBM) untuk langkah yang malar. Kaedah blok peringkat tiga yang dicadangkan telah dirumus menggunakan pengembangan Taylor dan akan menganggar penyelesaian berangka secara serentak pada dua titik. Kaedah 2PBM dibangunkan dengan menggabungkan formula peramal dan pembetul dalam mod PECE. Kaedah peramal adalah tak tersirat manakala kaedah pembetul adalah tersirat. Algoritma penyelesaian anggaran dibina dan dianalisis menggunakan kaedah 2PBM dengan peraturan kuadratur Newton-Cotes. Kertas ini memberi tumpuan kepada jenis kelengahan malar dan pantograf serta nilai sebelumnya digunakan untuk menginterpolasi penyelesaian kelengahan. Selain itu, kajian juga dijalankan ke atas analisis kestabilan bagi kaedah yang dicadangkan. Beberapa keputusan berangka diuji untuk mengesahkan kecekapan kaedah blok berbilang langkah dengan pendekatan peraturan kuadratur.
Kata kunci: Blok berbilang langkah; peraturan Newton-Cotes; persamaan pembezaaan lengah-kamilan Volterra
REFERENCES
Ali, H.A. 2009. Expansion method for solving linear delay integro-differential equation using B-spline
functions. Engineering and Technology Journal 27(10):
1651-1661.
Ayad, A. 2001. The numerical solution of first order delay integro-differential equations by spline functions. International
Journal of Computer Mathematics 77(1): 125-134.
Baharum, N.A., Majid, Z.A. & Senu, N.
2022. Boole’s strategy in multistep block method for Volterra integro-differential equation. Malaysian Journal of
Mathematical Sciences 16(2): 237-256.
Baker, C.T.H. 2000. A perspective on the numerical treatment
of Volterra equations. Journal of Computational and Applied Mathematics 125(1-2):
217-249.
Ismail, N.I.N., Majid, Z.A. & Senu,
N. 2020. Hybrid multistep block method for solving neutral delay differential
equations. Sains Malaysiana 49(4):
929-940.
Janodi, M.R., Majid, Z.A., Ismail, F. & Senu,
N. 2020. Numerical solution of Volterra integro-differential
equations by hybrid block with quadrature rules method. Malaysian
Journal of Mathematical Sciences 14(2): 191-208.
Kolmanovskii, V. & Myshkis, A. 2012. Applied
Theory of Functional Differential Equations. New York: Kluwer Academic
Publisher.
Lambert, J.D. 1973. Computational
Methods in Ordinary Differential Equations. New York: Wiley.
Majid, Z.A. & Mohamed, N.A. 2019. Fifth order multistep
block method for solving Volterra integro-differential
equations of second kind. Sains Malaysiana 48(3):
677-684.
Mustafa, Q.K. & Mohammed, A.M.
2018. Numerical method for solving delay integro-differential
equations. Research Journal of Applied Sciences 13: 103-105.
Qin, H., Zhiyong, W., Fumin, Z. & Jinming, W. 2018.
Stability analysis of additive Runge-Kutta methods
for delay-integro-differential equations. International
Journal of Differential Equations. 2018: Article ID. 8241784.
https://doi.org/10.1155/2018/8241784
Salih, R.K., Hassan, I.H. & Atheer,
J.K. 2014. An approximated solutions for nth order linear delay integro-differential equations of convolution type using
B-spline functions and Weddle method. Baghdad Science Journal 11(1):
168-177.
Salih, R.K., Hassan, I.H., Atheer,
J.K. & Fuad, A.H. 2010. B-spline functions for solving nth order
linear delay integro-differential equations of
convolution type. Engineering and Technology Journal 28(23):
6801-6813.
Shakourifar, M. & Dehghan,
M. 2008. On the numerical solution of nonlinear systems of Volterra integro-differential equations with delay arguments. Computing 82(4):
241-260.
Yüzbaşı, Ş. & Karaçayır, M.
2018. A numerical approach for solving high-order linear delay Volterra integro-differential equations. International Journal of
Computational Methods 15(5): 1850042.
Zaidan, L.I. 2012. Solving linear delay Volterra integro-differential equations by using Galerkin’s method with Bernstien polynomial. J. Bablyon Appl. Sci. 20: 1305-1313.
*Corresponding author;
email: am_zana@upm.edu.my
|