Sains Malaysiana 51(10)(2022):
3271-3284
http://doi.org/10.17576/jsm-2022-5110-13
Physicochemical
and Pharmacokinetic Evaluation of Praziquantel Co-Crystals by Varying the
Spacer Group of Co-Crystal Formers
(Penilaian Fizikokimia dan Farmakokinetik Gabungan Hablur Praziquantel dengan Mempelbagaikan Kumpulan Penjarak
Pembentuk Gabungan Hablur)
MUHAMMAD
WASIM1,*, ABDUL MANNAN1, TABINDA
AZIM2, RASHID ALI KHAN3, GHALLAB ALOTAIBI4,
MUHAMMAD AMER5, MUHAMMAD SHAFIQUE4, MUHAMMAD ASGHAR KHAN6,
SUMAIRA GUL7 & IZHAR HUSSAIN1
1Department
of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 45550,
Pakistan
2Department
of Pharmacy, Iqra University Islamabad Campus,
Islamabad, Pakistan
3Shifa
College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
4Department
of Pharmaceutical Sciences, College of Pharmacy, Al-Dawadmi Campus, Shaqra University, Shaqra,
KSA
5Department
of Pharmacy, Abasyn University Islamabad Campus,
Islamabad, Pakistan
6Department
of Pharmacy, University of Malakand, Chakdara 18800,
Pakistan
7Department
of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
Received: 18 Jan
2022/Accepted: 23 May 2022
Abstract
The
research work focuses on investigating the effects of spacer group (varying aliphatic
chain length=n) of co-crystal formers (oxalic acid (OA, n=0), (malonic acid
(MA, n=1), (succinic acid (SA, n=2), (glutaric acid (GA, n=3), and (adipic acid
(AA, n=4) on the physicochemical properties and oral bioavailability of
praziquantel (PZQ) co-crystals. For this purpose, different co-crystals of PZQ
with dicarboxylic acid co-crystal formers (OA, MA, SA, GA, and AA) were
synthesized. These co-crystals were characterized by powder X-ray
diffractometry (XRPD), differential scanning calorimetry (DSC), Fourier
transform infrared spectroscopy (FT-IR), and thermogravimetry (TG) techniques.
The in-vitro (solubility and
dissolution) and in-vivo pharmacokinetic (P.K) studies were performed for PZQ co-crystals. Additionally,
the effect of polymer hydroxypropyl cellulose (HPC) on the formation of PZQ
co-crystals was also investigated. According to the study results, PZQ-SA
co-crystal showed improved solubility, dissolution, and oral bioavailability.
Overall, the solubility, dissolution, and oral bioavailability are consistent
with each other. The order of improved solubility, dissolution, and oral
bioavailability is observed as consistent like PZQ-SA > PZQ-AA > PZQ-GA
> PZQ-OA > PZQ-MA > pure PZQ. Concerning HPC polymer effects, PZQ-OA,
PZQ-MA, PZQ-GA, and PZQ-AA co-crystals were formed successfully in the presence
of HPC polymer but the PZQ-SA co-crystal was inhibited.
Keywords:
Co-crystal; pharmacokinetic parameters; physicochemical properties; spacer
group
Abstrak
Penyelidikan ini memberi tumpuan kepada kajian kesan kumpulan penjarak (pelbagai panjang rantai alifatik=n) pembentuk gabungan hablur (asid oksalik (OA, n=0), (asid malonik (MA, n=1), (asid suksinik (SA, n=2), (asid glutarik (GA, n=3) dan (asid adipik (AA, n=4) pada sifat fizikokimia dan bioketersediaan oral bersama gabungan hablur praziquantel (PZQ). Untuk tujuan ini, gabungan hablur berbeza PZQ dengan pembentuk gabungan hablur asid dikarboksilik (OA, MA, SA,
GA dan AA) telah disintesis. Gabungan hablur ini dicirikan oleh difraktometri sinar-X serbuk (XRPD), kalorimetri pengimbasan pembezaan (DSC), teknik spektroskopi inframerah transformasi Fourier
(FT-IR) dan termogravimetri (TG). Kajian in-vitro (keterlarutan dan pelarutan)
dan farmakokinetik in-vivo (P.K) telah dilakukan untuk gabungan hablur PZQ. Selain itu, kesan polimer hidroksipropil selulosa (HPC) pada pembentukan gabungan hablur PZQ turut dikaji. Menurut hasil kajian, gabungan hablur PZQ-SA menunjukkan kebolehgunaan sol yang lebih baik, pembubaran dan bioketersediaan oral. Secara keseluruhan, keterlarutan, pembubaran dan bioketersediaan oral adalah konsisten antara satu sama lain. Urutan keterlarutan, pelarutan dan bioketersediaan oral yang lebih baik diperhatikan sebagai konsisten seperti PZQ-SA >
PZQ-AA > PZQ-GA > PZQ-OA > PZQ-MA > PZQ tulen. Mengenai kesan polimer HPC, gabungan hablur PZQ-OA, PZQ-MA, PZQ-GA dan PZQ-AA telah terbentuk dengan jayanya dengan kehadiran polimer HPC tetapi gabungan hablur PZQ-SA telah dihalang.
Kata kunci: Gabungan hablur; kumpulan penjarak; parameter farmakokinetik; sifat fizikokimia
REFERENCES
Aakeroy, C.B. & Sinha, A.S. 2018. Co-Crystals: Preparation, Characterization and Applications. Vol.
24. Royal Society of Chemistry.
Aitipamula, S., Wong, A.B., Chow, P.S. & Tan, R.B. 2012.
Pharmaceutical cocrystals of ethenzamide: Structural,
solubility and dissolution studies. CrystEngComm 14: 8515-8524.
Andrade, L.N., Oliveira, D.M.L., Chaud, M.V., Alves, T.F.R., Nery, M., da Silva, C.F., Gonsalves, J.K.C., Nunes, R.S., Corrêa,
C.B., Amaral, R.G., Sanchez-Lopez, E., Souto, E.B.
& Severino, P. 2019. Praziquantel-solid lipid nanoparticles produced by
supercritical carbon dioxide extraction: Physicochemical characterization,
release profile, and cytotoxicity. Molecules 24(21): 3881.
Arenas-Garcia, J.I., Herrera-Ruiz,
D., Mondragon-Vasquez, K., Morales-Rojas, H. & Hopfl,
H. 2010. Co-crystals of active pharmaceutical ingredients-acetazolamide. Crystal Growth & Design 10:
3732-3742.
Basavoju, S., Bostrom, D. & Velaga,
S.P. 2008. Indomethacin–saccharin cocrystal: Design, synthesis and preliminary
pharmaceutical characterization. Pharmaceutical
Research 25: 530-541.
Basavoju, S., Bostrom, D.
& Velaga, S.P. 2006. Pharmaceutical cocrystal and salts of norfloxacin. Crystal Growth & Design 6(12): 2699-2708.
Bhatt, P.M., Ravindra, N.V.,
Banerjee, R. & Desiraju, G.R. 2005. Saccharin as a salt former. Enhanced
solubilities of saccharinates of active pharmaceutical ingredients. Chemical Communications 28(8): 1073-1075.
Borrego-Sanchez, A., Viseras, C., Aguzzi, C. & Sainz-Díaz, C.I. 2016. Molecular and crystal structure of
praziquantel. Spectroscopic properties and crystal polymorphism. European Journal of Pharmaceutical Sciences 92: 266-275.
Butreddy, A., Sarabu, S., Bandari,
S., Dumpa, N., Zhang, F. & Repka,
M.A. 2020. Polymer-assisted aripiprazole–adipic acid cocrystals produced by hot
melt extrusion techniques. Crystal Growth &
Design 20(7): 4335-4345.
Childs, S.L., Rodriguez-Hornedo, N., Reddy, L.S., Jayasankar,
A., Maheshwari, C., McCausland, L., Shipplett,
R. & Stahly, B.C. 2008. Screening strategies
based on solubility and solution composition generate pharmaceutically
acceptable cocrystals of carbamazepine. CrystEngComm 10(7): 856-864.
Childs, S.L., Chyall, L.J., Dunlap, J.T., Smolenskaya,
V.N., Stahly, B.C. & Stahly,
G.P. 2004. Crystal engineering approach to forming cocrystals of amine
hydrochlorides with organic acids. Molecular complexes of fluoxetine
hydrochloride with benzoic, succinic, and fumaric acids. Journal of the
American Chemical Society 126(41): 13335-13342.
Childs, S.L., Kandi, P. & Lingireddy, S.R. 2013. Formulation of a danazol cocrystal
with controlled supersaturation plays an essential role in improving
bioavailability. Molecular Pharmaceutics 10(8): 3112-3127.
Costa, E.D., Priotti, J., Orlandi, S.,
Leonardi, D., Lamas, M.C., Nunes, T.G., Diogo, H.P.,
Salomon, C.J. & Ferreira, M.J. 2016.
Unexpected solvent impact in the crystallinity of praziquantel/poly
(vinylpyrrolidone) formulations. A solubility, DSC and solid-state NMR study. International Journal of Pharmaceutics 511(2): 983-993.
Cugovcan, M., Jablan, J., Lovric, J., Cincic, D., Galic, N. & Jug, M. 2017. Biopharmaceutical
characterization of praziquantel cocrystals and cyclodextrin complexes prepared
by grinding. Journal of Pharmaceutical and Biomedical Analysis 137: 42-53.
Dametto, P.R., Dametto, A.C., Polese, L., Ribeiro, C.A., Chorilli,
M. & de Freitas, O. 2017. Development and physicochemical characterization
of solid dispersions containing praziquantel for the treatment of
schistosomiasis. Journal of Thermal Analysis and Calorimetry 127(2): 1693-1706.
Dayan, A.D. 2003.
Albendazole, mebendazole and praziquantel. Review of non-clinical toxicity and
pharmacokinetics. Acta Tropica 86(2-3):
141-159.
Dinora, G.E., Julio, R., Nelly, C., Lilian, Y.M. &
Cook, H.J. 2005. In vitro characterization of some biopharmaceutical properties of praziquantel. International Journal of Pharmaceutics 295(1-2): 93-99.
Duggirala, N.K., Perry, M.L., Almarsson,
O. & Zaworotko, M.J. 2016. Pharmaceutical
cocrystals: Along the path to improved medicines. Chemical
Communications 52(4): 640-655.
El-Arini,
S.K., Giron, D. & Leuenberger,
H. 1998. Solubility properties of racemic praziquantel and its
enantiomers. Pharmaceutical Development and Technology 3(4):
557-564.
Espinosa-Lara, J.C.,
Guzman-Villanueva, D., Arenas-García, J.I., Herrera-Ruiz, D., Rivera-Islas, J.,
Roman-Bravo, P., Morales-Rojas, H. & Hopfl, H.
2013. Cocrystals of active pharmaceutical ingredients−Praziquantel in
combination with oxalic, malonic, succinic, maleic, fumaric, glutaric, adipic,
and pimelic acids. Crystal Growth & Design 13(1):
169-185.
Fischer, F., Scholz, G., Batzdorf, L., Wilke, M. & Emmerling,
F. 2015. Synthesis, structure determination, and formation of a theobromine:
Oxalic acid 2: 1 cocrystal. CrystEngComm 17(4):
824-829.
Fleischman, S.G., Kuduva,
S.S., McMahon, J.A., Moulton, B., Bailey Walsh, R.D., Rodriguez-Hornedo, N.
& Zaworotko, M.J. 2003. Crystal engineering of the composition of
pharmaceutical phases: Multiple-component crystalline solids involving
carbamazepine. Crystal Growth &
Design 3(6): 909-919.
Friscic, T. & Jones, W.
2010. Benefits of cocrystallisation in pharmaceutical materials science: An
update. Journal of Pharmacy and
Pharmacology 62(11): 1547-1559.
Huang, Y., Zhang, B., Gao,
Y., Zhang, J. & Shi, L. 2014. Baicalein–nicotinamide cocrystal with
enhanced solubility, dissolution, and oral bioavailability. Journal of Pharmaceutical Sciences 103(8): 2330-2337.
Kakkar, S., Bhattacharya, B., Reddy, C.M. & Ghosh, S.
2018. Tuning mechanical behaviour by controlling the
structure of a series of theophylline co-crystals. CrystEngComm 20(8):
1101-1109.
Karagianni, A., Malamatari, M. & Kachrimanis, K. 2018. Pharmaceutical cocrystals: New solid
phase modification approaches for the formulation of APIs. Pharmaceutics 10(1): 18.
Li, R., Chen, X., He, G., Wu,
C., Gan, Z., He, Z., Zhao, J. & Han, D. 2020. The dissolution behaviour and thermodynamic properties calculation of
praziquantel in pure and mixed organic solvents. The Journal of
Chemical Thermodynamics 144: 106062.
Li, J., Wang, Y., Fenwick,
A., Clayton, T.A., Lau, Y.Y., Legido-Quigley, C.,
Lindon, J.C., Utzinger, J. & Holmes, E. 2007. A
high-performance liquid chromatography and nuclear magnetic resonance
spectroscopy-based analysis of commercially available praziquantel
tablets. Journal of Pharmaceutical and Biomedical Analysis 45(2):
263-267.
Liu, Y., Wang, T., Ding, W.,
Dong, C., Wang, X., Chen, J. & Li, Y. 2018. Dissolution and oral
bioavailability enhancement of praziquantel by solid dispersions. Drug
Delivery and Translational Research8(3):
580-590.
Liu, Y., Wang, X., Wang, J.K.
& Ching, C.B. 2006. Investigation of the phase diagrams of chiral
praziquantel. Chirality: The Pharmacological, Biological, and Chemical
Consequences of Molecular Asymmetry 18(4): 259-264.
McNamara, D.P., Childs, S.L.,
Giordano, J., Iarriccio, A., Cassidy, J., Shet, M.S., Mannion, R., O'Donnell, E. & Park, A. 2006. Use of a glutaric acid
cocrystal to improve oral bioavailability of a low solubility API. Pharmaceutical
Research 23(8): 1888-1897.
Mishra, A., Vuddanda, P.R. & Singh, S. 2014. Intestinal lymphatic
delivery of praziquantel by solid lipid nanoparticles: Formulation design, in vitro and in vivo studies. Journal of Nanotechnology 2014: Article ID. 351693. doi.org/10.1155/2014/351693
Pavia, D.L., Lampman, G.M., Kriz, G.S. & Vyvyan, J.A. 2014. Introduction to Spectroscopy. Cengage Learning.
Perumalla, S.R. & Sun, C.C. 2013. Improved solid-state
stability of salts by cocrystallization between
conjugate acid–base pairs. CrystEngComm 15(29): 5756-5759.
Pharmacopoeia, U.S. 2017. USP
40−NF 35. The USP Convention. Rockville. pp. 5803-5805.
Qian, M., Ho, R.J., Qiao, C.
& Shi, J. 2017. U.S. Patent No. 9,657,017. Washington, DC: U.S. Patent and
Trademark Office.
Radwan, A., El-Lakkany, N.M., William, S., El-Feky,
G.S., Al-Shorbagy, M.Y., Saleh, S. & Botros, S. 2019. A novel praziquantel solid lipid
nanoparticle formulation shows enhanced bioavailability and antischistosomal efficacy against murine S. mansoni infection. Parasites & Vectors 12(1): 1-12.
Saganowska, P. & Wesolowski, M.
2018. DSC as a screening tool for rapid co-crystal detection in binary mixtures
of benzodiazepines with co-formers.
Journal of Thermal Analysis and Calorimetry 133(1): 785-795.
Salazar-Rojas, D., Maggio,
R.M. & Kaufman, T.S. 2020. Preparation and characterization of a new solid
form of praziquantel, an essential anthelmintic drug. Praziquantel racemic
monohydrate. European Journal of
Pharmaceutical Sciences 146: 105267.
Savjani, K.T., Gajjar, A.K. & Savjani, J.K. 2012. Drug solubility: Importance and
enhancement techniques. International Scholarly Research Notices 2012:
195727. doi:10.5402/2012/195727
Smith, A.J., Kavuru, P., Wojtas, L., Zaworotko, M.J. & Shytle,
R.D. 2012. Cocrystals of quercetin with improved solubility and oral
bioavailability. Molecular Pharmaceutics 8(5): 1867-1876.
Stuart, B.H. 2004. Infrared Spectroscopy: Fundamentals and
Applications. New York: John Wiley & Sons.
Ullah, M., Hussain, I. &
Sun, C.C. 2016. The development of carbamazepine-succinic acid cocrystal tablet
formulations with improved in vitro and in vivo performance. Drug Development and Industrial Pharmacy 42(6): 969-976.
Valdes-Negrin,
H.L., Alvarez, O., Perez-Rodriguez, Z., Rodriguez-Negrin,
Z. & Perez-Rodriguez, M. 2022. Analyzing thermal degradation of furvina drug using a stability indicating
spectrophotometric method and characterization studies. Chemistry Africa 5: 305-312.
Walsh, R.B., Bradner, M.W.,
Fleischman, S., Morales, L.A., Moulton, B., Rodriguez-Hornedo, N. &
Zaworotko, M.J. 2003. Crystal engineering of the composition of pharmaceutical
phases. Chemical Communications 2:
186-187.
Wasim,
M., Mannan, A., Asad, M.H.H.B., Amirzada,
M.I., Shafique, M. & Hussain, I. 2021. Fabrication of carbamazepine
cocrystals: Characterization, in vitro and comparative in vivo evaluation. BioMed Research International 2021:
6685806.
Wang,
J.R., Yu, X., Zhou, C., Lin, Y., Chen, C., Pan, G. & Mei, X. 2015. Improving
the dissolution and bioavailability of 6-mercaptopurine via co-crystallization
with isonicotinamide. Bioorganic & Medicinal Chemistry Letters 25(5): 1036-1039.
Wicaksono, Y., Wisudyaningsih, B.
& Siswoyo, T.A. 2017. Cocrystal of atorvastatin
calcium–malonic acid. UNEJ e-Proceeding. pp. 75-78.
Zanolla, D., Perissutti, B., Passerini, N., Chierotti, M.R., Hasa, D., Voinovich, D., Gigli, L., Demitri,
N., Geremia, S., Keiser, J. & Albertini, B. 2018.
A new soluble and bioactive polymorph of praziquantel. European Journal
of Pharmaceutics and Biopharmaceutics 127: 19-28.
Zhang, H., Zhu, Y., Qiao, N., Chen, Y. & Gao, L. 2017. Preparation and
characterization of carbamazepine cocrystal in polymer solution. Pharmaceutics 9(4): 54.
*Corresponding author; email: wassypharmacist@gmail.com
|