Sains Malaysiana 51(10)(2022): 3271-3284

http://doi.org/10.17576/jsm-2022-5110-13

 

Physicochemical and Pharmacokinetic Evaluation of Praziquantel Co-Crystals by Varying the Spacer Group of Co-Crystal Formers

(Penilaian Fizikokimia dan Farmakokinetik Gabungan Hablur Praziquantel dengan Mempelbagaikan Kumpulan Penjarak Pembentuk Gabungan Hablur)

 

MUHAMMAD WASIM1,*, ABDUL MANNAN1, TABINDA AZIM2, RASHID ALI KHAN3, GHALLAB ALOTAIBI4, MUHAMMAD AMER5, MUHAMMAD SHAFIQUE4, MUHAMMAD ASGHAR KHAN6, SUMAIRA GUL7 & IZHAR HUSSAIN1

 

1Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 45550, Pakistan

2Department of Pharmacy, Iqra University Islamabad Campus, Islamabad, Pakistan

3Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan

4Department of Pharmaceutical Sciences, College of Pharmacy, Al-Dawadmi Campus, Shaqra University, Shaqra, KSA

5Department of Pharmacy, Abasyn University Islamabad Campus, Islamabad, Pakistan

6Department of Pharmacy, University of Malakand, Chakdara 18800, Pakistan

7Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan

 

Received: 18 Jan 2022/Accepted: 23 May 2022

 

Abstract

The research work focuses on investigating the effects of spacer group (varying aliphatic chain length=n) of co-crystal formers (oxalic acid (OA, n=0), (malonic acid (MA, n=1), (succinic acid (SA, n=2), (glutaric acid (GA, n=3), and (adipic acid (AA, n=4) on the physicochemical properties and oral bioavailability of praziquantel (PZQ) co-crystals. For this purpose, different co-crystals of PZQ with dicarboxylic acid co-crystal formers (OA, MA, SA, GA, and AA) were synthesized. These co-crystals were characterized by powder X-ray diffractometry (XRPD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetry (TG) techniques. The in-vitro (solubility and dissolution) and in-vivo pharmacokinetic (P.K) studies were performed for PZQ co-crystals. Additionally, the effect of polymer hydroxypropyl cellulose (HPC) on the formation of PZQ co-crystals was also investigated. According to the study results, PZQ-SA co-crystal showed improved solubility, dissolution, and oral bioavailability. Overall, the solubility, dissolution, and oral bioavailability are consistent with each other. The order of improved solubility, dissolution, and oral bioavailability is observed as consistent like PZQ-SA > PZQ-AA > PZQ-GA > PZQ-OA > PZQ-MA > pure PZQ. Concerning HPC polymer effects, PZQ-OA, PZQ-MA, PZQ-GA, and PZQ-AA co-crystals were formed successfully in the presence of HPC polymer but the PZQ-SA co-crystal was inhibited.

 

Keywords: Co-crystal; pharmacokinetic parameters; physicochemical properties; spacer group

 

Abstrak

Penyelidikan ini memberi tumpuan kepada kajian kesan kumpulan penjarak (pelbagai panjang rantai alifatik=n) pembentuk gabungan hablur (asid oksalik (OA, n=0), (asid malonik (MA, n=1), (asid suksinik (SA, n=2), (asid glutarik (GA, n=3) dan (asid adipik (AA, n=4) pada sifat fizikokimia dan bioketersediaan oral bersama gabungan hablur praziquantel (PZQ). Untuk tujuan ini, gabungan hablur berbeza PZQ dengan pembentuk gabungan hablur asid dikarboksilik (OA, MA, SA, GA dan AA) telah disintesis. Gabungan hablur ini dicirikan oleh difraktometri sinar-X serbuk (XRPD), kalorimetri pengimbasan pembezaan (DSC), teknik spektroskopi inframerah transformasi Fourier (FT-IR) dan termogravimetri (TG). Kajian in-vitro (keterlarutan dan pelarutan) dan farmakokinetik in-vivo (P.K) telah dilakukan untuk gabungan hablur PZQ. Selain itu, kesan polimer hidroksipropil selulosa (HPC) pada pembentukan gabungan hablur PZQ turut dikaji. Menurut hasil kajian, gabungan hablur PZQ-SA menunjukkan kebolehgunaan sol yang lebih baik, pembubaran dan bioketersediaan oral. Secara keseluruhan, keterlarutan, pembubaran dan bioketersediaan oral adalah konsisten antara satu sama lain. Urutan keterlarutan, pelarutan dan bioketersediaan oral yang lebih baik diperhatikan sebagai konsisten seperti PZQ-SA > PZQ-AA > PZQ-GA > PZQ-OA > PZQ-MA > PZQ tulen. Mengenai kesan polimer HPC, gabungan hablur PZQ-OA, PZQ-MA, PZQ-GA dan PZQ-AA telah terbentuk dengan jayanya dengan kehadiran polimer HPC tetapi gabungan hablur PZQ-SA telah dihalang.

 

Kata kunci: Gabungan hablur; kumpulan penjarak; parameter farmakokinetik; sifat fizikokimia

 

REFERENCES

Aakeroy, C.B. & Sinha, A.S. 2018. Co-Crystals: Preparation, Characterization and Applications. Vol. 24. Royal Society of Chemistry.

Aitipamula, S., Wong, A.B., Chow, P.S. & Tan, R.B. 2012. Pharmaceutical cocrystals of ethenzamide: Structural, solubility and dissolution studies. CrystEngComm 14: 8515-8524.

Andrade, L.N., Oliveira, D.M.L., Chaud, M.V., Alves, T.F.R., Nery, M., da Silva, C.F., Gonsalves, J.K.C., Nunes, R.S., Corrêa, C.B., Amaral, R.G., Sanchez-Lopez, E., Souto, E.B. & Severino, P. 2019. Praziquantel-solid lipid nanoparticles produced by supercritical carbon dioxide extraction: Physicochemical characterization, release profile, and cytotoxicity. Molecules 24(21): 3881.

Arenas-Garcia, J.I., Herrera-Ruiz, D., Mondragon-Vasquez, K., Morales-Rojas, H. & Hopfl, H. 2010. Co-crystals of active pharmaceutical ingredients-acetazolamide. Crystal Growth & Design 10: 3732-3742.

Basavoju, S., Bostrom, D. & Velaga, S.P. 2008. Indomethacin–saccharin cocrystal: Design, synthesis and preliminary pharmaceutical characterization. Pharmaceutical Research 25: 530-541.

Basavoju, S., Bostrom, D. & Velaga, S.P. 2006. Pharmaceutical cocrystal and salts of norfloxacin. Crystal Growth & Design 6(12): 2699-2708.

Bhatt, P.M., Ravindra, N.V., Banerjee, R. & Desiraju, G.R. 2005. Saccharin as a salt former. Enhanced solubilities of saccharinates of active pharmaceutical ingredients. Chemical Communications 28(8): 1073-1075.

Borrego-Sanchez, A., Viseras, C., Aguzzi, C. & Sainz-Díaz, C.I. 2016. Molecular and crystal structure of praziquantel. Spectroscopic properties and crystal polymorphism. European Journal of Pharmaceutical Sciences 92: 266-275.

Butreddy, A., Sarabu, S., Bandari, S., Dumpa, N., Zhang, F. & Repka, M.A. 2020. Polymer-assisted aripiprazole–adipic acid cocrystals produced by hot melt extrusion techniques. Crystal Growth & Design 20(7): 4335-4345.

Childs, S.L., Rodriguez-Hornedo, N., Reddy, L.S., Jayasankar, A., Maheshwari, C., McCausland, L., Shipplett, R. & Stahly, B.C. 2008. Screening strategies based on solubility and solution composition generate pharmaceutically acceptable cocrystals of carbamazepine. CrystEngComm 10(7): 856-864. 

Childs, S.L., Chyall, L.J., Dunlap, J.T., Smolenskaya, V.N., Stahly, B.C. & Stahly, G.P. 2004. Crystal engineering approach to forming cocrystals of amine hydrochlorides with organic acids. Molecular complexes of fluoxetine hydrochloride with benzoic, succinic, and fumaric acids. Journal of the American Chemical Society 126(41): 13335-13342.

Childs, S.L., Kandi, P. & Lingireddy, S.R. 2013. Formulation of a danazol cocrystal with controlled supersaturation plays an essential role in improving bioavailability. Molecular Pharmaceutics 10(8): 3112-3127.

Costa, E.D., Priotti, J., Orlandi, S., Leonardi, D., Lamas, M.C., Nunes, T.G., Diogo, H.P., Salomon, C.J.  & Ferreira, M.J. 2016. Unexpected solvent impact in the crystallinity of praziquantel/poly (vinylpyrrolidone) formulations. A solubility, DSC and solid-state NMR study. International Journal of Pharmaceutics 511(2): 983-993.

Cugovcan, M., Jablan, J., Lovric, J., Cincic, D., Galic, N. & Jug, M. 2017. Biopharmaceutical characterization of praziquantel cocrystals and cyclodextrin complexes prepared by grinding. Journal of Pharmaceutical and Biomedical Analysis 137: 42-53.

Dametto, P.R., Dametto, A.C., Polese, L., Ribeiro, C.A., Chorilli, M. & de Freitas, O. 2017. Development and physicochemical characterization of solid dispersions containing praziquantel for the treatment of schistosomiasis. Journal of Thermal Analysis and Calorimetry 127(2): 1693-1706.

Dayan, A.D. 2003. Albendazole, mebendazole and praziquantel. Review of non-clinical toxicity and pharmacokinetics. Acta Tropica 86(2-3): 141-159.

Dinora, G.E., Julio, R., Nelly, C., Lilian, Y.M. & Cook, H.J. 2005. In vitro characterization of some biopharmaceutical properties of praziquantel. International Journal of Pharmaceutics 295(1-2): 93-99.

Duggirala, N.K., Perry, M.L., Almarsson, O. & Zaworotko, M.J. 2016. Pharmaceutical cocrystals: Along the path to improved medicines. Chemical Communications 52(4): 640-655.

El-Arini, S.K., Giron, D. & Leuenberger, H. 1998. Solubility properties of racemic praziquantel and its enantiomers. Pharmaceutical Development and Technology 3(4): 557-564.

Espinosa-Lara, J.C., Guzman-Villanueva, D., Arenas-García, J.I., Herrera-Ruiz, D., Rivera-Islas, J., Roman-Bravo, P., Morales-Rojas, H. & Hopfl, H. 2013. Cocrystals of active pharmaceutical ingredients−Praziquantel in combination with oxalic, malonic, succinic, maleic, fumaric, glutaric, adipic, and pimelic acids. Crystal Growth & Design 13(1): 169-185.

Fischer, F., Scholz, G., Batzdorf, L., Wilke, M. & Emmerling, F. 2015. Synthesis, structure determination, and formation of a theobromine: Oxalic acid 2: 1 cocrystal. CrystEngComm 17(4): 824-829.

Fleischman, S.G., Kuduva, S.S., McMahon, J.A., Moulton, B., Bailey Walsh, R.D., Rodriguez-Hornedo, N. & Zaworotko, M.J. 2003. Crystal engineering of the composition of pharmaceutical phases: Multiple-component crystalline solids involving carbamazepine. Crystal Growth & Design 3(6): 909-919.

Friscic, T. & Jones, W. 2010. Benefits of cocrystallisation in pharmaceutical materials science: An update. Journal of Pharmacy and Pharmacology 62(11): 1547-1559.

Huang, Y., Zhang, B., Gao, Y., Zhang, J. & Shi, L. 2014. Baicalein–nicotinamide cocrystal with enhanced solubility, dissolution, and oral bioavailability. Journal of Pharmaceutical Sciences 103(8): 2330-2337.

Kakkar, S., Bhattacharya, B., Reddy, C.M. & Ghosh, S. 2018. Tuning mechanical behaviour by controlling the structure of a series of theophylline co-crystals. CrystEngComm 20(8): 1101-1109.

Karagianni, A., Malamatari, M. & Kachrimanis, K. 2018. Pharmaceutical cocrystals: New solid phase modification approaches for the formulation of APIs. Pharmaceutics 10(1): 18.

Li, R., Chen, X., He, G., Wu, C., Gan, Z., He, Z., Zhao, J. & Han, D. 2020. The dissolution behaviour and thermodynamic properties calculation of praziquantel in pure and mixed organic solvents. The Journal of Chemical Thermodynamics 144: 106062.

Li, J., Wang, Y., Fenwick, A., Clayton, T.A., Lau, Y.Y., Legido-Quigley, C., Lindon, J.C., Utzinger, J. & Holmes, E. 2007. A high-performance liquid chromatography and nuclear magnetic resonance spectroscopy-based analysis of commercially available praziquantel tablets. Journal of Pharmaceutical and Biomedical Analysis 45(2): 263-267.

Liu, Y., Wang, T., Ding, W., Dong, C., Wang, X., Chen, J. & Li, Y. 2018. Dissolution and oral bioavailability enhancement of praziquantel by solid dispersions. Drug Delivery and Translational Research8(3): 580-590.

Liu, Y., Wang, X., Wang, J.K. & Ching, C.B. 2006. Investigation of the phase diagrams of chiral praziquantel. Chirality: The Pharmacological, Biological, and Chemical Consequences of Molecular Asymmetry 18(4): 259-264.

McNamara, D.P., Childs, S.L., Giordano, J., Iarriccio, A., Cassidy, J., Shet, M.S., Mannion, R., O'Donnell, E. &  Park, A. 2006. Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API. Pharmaceutical Research 23(8): 1888-1897.

Mishra, A., Vuddanda, P.R. & Singh, S. 2014. Intestinal lymphatic delivery of praziquantel by solid lipid nanoparticles: Formulation design, in vitro and in vivo studies. Journal of Nanotechnology 2014: Article ID. 351693. doi.org/10.1155/2014/351693

Pavia, D.L., Lampman, G.M., Kriz, G.S. & Vyvyan, J.A. 2014. Introduction to Spectroscopy. Cengage Learning.

Perumalla, S.R. & Sun, C.C. 2013. Improved solid-state stability of salts by cocrystallization between conjugate acid–base pairs. CrystEngComm 15(29): 5756-5759.

Pharmacopoeia, U.S. 2017. USP 40−NF 35. The USP Convention. Rockville. pp. 5803-5805.

Qian, M., Ho, R.J., Qiao, C. & Shi, J. 2017. U.S. Patent No. 9,657,017. Washington, DC: U.S. Patent and Trademark Office.

Radwan, A., El-Lakkany, N.M., William, S., El-Feky, G.S., Al-Shorbagy, M.Y., Saleh, S. & Botros, S. 2019. A novel praziquantel solid lipid nanoparticle formulation shows enhanced bioavailability and antischistosomal efficacy against murine S. mansoni infection. Parasites & Vectors 12(1): 1-12.

Saganowska, P. & Wesolowski, M. 2018. DSC as a screening tool for rapid co-crystal detection in binary mixtures of benzodiazepines with co-formers. 
Journal of Thermal Analysis and Calorimetry
 133(1): 785-795.

Salazar-Rojas, D., Maggio, R.M. & Kaufman, T.S. 2020. Preparation and characterization of a new solid form of praziquantel, an essential anthelmintic drug. Praziquantel racemic monohydrate. European Journal of Pharmaceutical Sciences 146: 105267.

Savjani, K.T., Gajjar, A.K. & Savjani, J.K. 2012. Drug solubility: Importance and enhancement techniques. International Scholarly Research Notices 2012: 195727. doi:10.5402/2012/195727

Smith, A.J., Kavuru, P., Wojtas, L., Zaworotko, M.J. & Shytle, R.D. 2012. Cocrystals of quercetin with improved solubility and oral bioavailability. Molecular Pharmaceutics 8(5): 1867-1876.

Stuart, B.H. 2004. Infrared Spectroscopy: Fundamentals and Applications. New York: John Wiley & Sons.

Ullah, M., Hussain, I. & Sun, C.C. 2016. The development of carbamazepine-succinic acid cocrystal tablet formulations with improved in vitro and in vivo performance. Drug Development and Industrial Pharmacy 42(6): 969-976.

Valdes-Negrin, H.L., Alvarez, O., Perez-Rodriguez, Z., Rodriguez-Negrin, Z. & Perez-Rodriguez, M. 2022. Analyzing thermal degradation of furvina drug using a stability indicating spectrophotometric method and characterization studies. Chemistry Africa 5: 305-312.

Walsh, R.B., Bradner, M.W., Fleischman, S., Morales, L.A., Moulton, B., Rodriguez-Hornedo, N. & Zaworotko, M.J. 2003. Crystal engineering of the composition of pharmaceutical phases. Chemical Communications 2: 186-187.

Wasim, M., Mannan, A., Asad, M.H.H.B., Amirzada, M.I., Shafique, M. & Hussain, I. 2021. Fabrication of carbamazepine cocrystals: Characterization, in vitro and comparative in vivo evaluation. BioMed Research International 2021: 6685806.

Wang, J.R., Yu, X., Zhou, C., Lin, Y., Chen, C., Pan, G. & Mei, X. 2015. Improving the dissolution and bioavailability of 6-mercaptopurine via co-crystallization with isonicotinamide. Bioorganic & Medicinal Chemistry Letters 25(5): 1036-1039.

Wicaksono, Y., Wisudyaningsih, B. & Siswoyo, T.A. 2017. Cocrystal of atorvastatin calcium–malonic acid. UNEJ e-Proceeding. pp. 75-78.

Zanolla, D., Perissutti, B., Passerini, N., Chierotti, M.R., Hasa, D., Voinovich, D., Gigli, L., Demitri, N., Geremia, S., Keiser, J. & Albertini, B. 2018. A new soluble and bioactive polymorph of praziquantel. European Journal of Pharmaceutics and Biopharmaceutics 127: 19-28.

Zhang, H., Zhu, Y., Qiao, N., Chen, Y. & Gao, L. 2017. Preparation and characterization of carbamazepine cocrystal in polymer solution. Pharmaceutics 9(4): 54.

 

*Corresponding author; email: wassypharmacist@gmail.com

 

 

 

 

 

previous