Sains Malaysiana 50(2)(2021): 481-492
http://dx.doi.org/10.17576/jsm-2021-5002-19
The
Effects of Acute Glucoprivation on
Adrenomedullary Function in SHR and WKY Rats
(Kesan Deprivasi Glukosa Akut pada Fungsi Medula Adrenal pada Tikus SHR dan WKY)
HANAFI AHMAD
DAMANHURI1*, PETER ROBERT DUNKLEY2 & ANN KATHLEEN
GOODCHILD3
1Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia
Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Federal Territory, Malaysia
2School of Biomedical Sciences and Pharmacy, The
University of Newcastle, Callaghan, New South Wales, 2308, Australia
3Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
Received:
11 March 2020/Accepted: 17 July 2020
ABSTRACT
We have
shown previously, acute
intraperitoneal administration of 2-deoxy-d-glucose (2DG) into Sprague-Dawley
rats led to activation of the adrenal medulla chromaffin cells, indicated with
increased protein kinase activity and increased tyrosine hydroxylase (TH)
phosphorylation, as well as increased plasma adrenaline and glucose levels.
Here we have used spontaneous hypertensive (SHR) and Wistar Kyoto (WKY) rats to
investigate whether hypertension alters basal adrenal chromaffin cell function,
or the response of these cells to acute 2DG treatment. At basal level, we found
no differences in adrenal medulla TH protein, TH phosphorylation, TH activity
or catecholamine levels between SHR and WKY despite a significant difference in
the level of systolic blood pressure; nor were there differences in plasma
catecholamine levels or blood glucose (BG). Furthermore, the vehicle animals
evoked no significant changes in any parameter measured in SHR, but evoked
significant increases in pSer19TH, plasma adrenaline and BG in WKY. Single
episode of glucoprivation evoked increases in PKA and
CDK/MAPK, pSer40TH, pSer31TH, TH activity, and plasma adrenaline and BG in SHR,
and in addition evoked increases in PKC, CAMKII, and pSer19TH in WKY. These
findings are significant which indicates hypertension does not impact
catecholamine function in the adrenal gland. It also appears that hypertension
does not alter the adrenal response to glucoprivation.
The findings are also significant as WKY showed greater adrenal activation of
protein kinases and TH phosphorylation in response to saline and 2DG when
compared to SHR and possible reasons for these findings are further discussed.
Keywords:
Adrenal gland; glucoprivation; hypertension; protein
kinase; tyrosine hydroxylase
ABSTRAK
Kajian
kami yang lepas telah menunjukkan bahawa pemberian intraperitoneal 2-deoksi-D-glukosa (2DG) akut kepada tikus Sprague-Dawley menyebabkan pengaktifan sel kromafin dalam medula adrenal yang ditunjukkan oleh peningkatan aktiviti protein kinase, pemfosforilan tirosina hidroksilase (TH), serta aras adrenalina dan plasma glukosa. Dalam kajian ini, kami telah menggunakan tikus hipertensi spontan (SHR) dan Wistar Kyoto (WKY) untuk mengkaji sama ada hipertensi akan mengubah fungsi bes sel kromafin adrenal serta tindak balas sel-sel tersebut terhadap rawatan 2DG akut. Pada peringkat bes, didapati tiada perbezaan pada aras protein TH, pemfosforilan TH, aktiviti TH atau aras katekolamina medula adrenal antara tikus SHR dan WKY walaupun terdapat perbezaan yang signifikan pada tahap tekanan darah sistolik; serta tiada perbezaan pada aras plasma katekolamina dan glukosa darah (BG). Tiada perubahan pada sebarang parameter
yang diukur pada tikus pengangkut SHR, sebaliknya, terdapat peningkatan ketara pada pSer19TH, plasma adrenalina dan BG dalam tikus pengangkut WKY. Episod tunggal deprivasi glukosa mengakibatkan peningkatan pada PKA dan CDK/MAPK, pSer40TH, pSer31TH, aktiviti TH, plasma adrenalina dan BG dalam tikus SHR; di samping meningkatkan PKC, CAMKII
dan pSer19TH pada tikus WKY. Hasil ini menunjukkan bahawa hipertensi tidak memberi kesan kepada fungsi katekolamina dalam kelenjar adrenal. Hipertensi turut tidak mengubah tindak balas adrenal kepada deprivasi glukosa. Tambahan pula, tikus WKY menunjukkan pengaktifan protein kinase dan pemfosforilan TH adrenal yang lebih tinggi sebagai tindak balas kepada saline dan 2DG berbanding SHR. Faktor yang mungkin menyebabkan penemuan ini turut dibincangkan dengan lebih lanjut.
Kata kunci: Deprivasi glukosa; hipertensi; kelenjar adrenal;
protein kinase; tirosina hidroksilase
REFERENCES
Adebiyi,
A.A., Akinosun, O.M., Nwafor, C.E. & Falase, A.O. 2011. Plasma catecholamines in Nigerians with
primary hypertension. Ethnicity & Disease 21(2): 158-162.
Anton,
A.H. & Sayre, D.F. 1962. A study of the factors affecting the aluminum
oxide-trihydroxyindole procedure for the analysis of
catecholamines. Journal of Pharmacology and Experimental Therapeutics 138(3):
360-375.
Bobrovskaya, L., Damanhuri, H.A., Ong, L.K., Schneider, J.J., Dickson, P.W.,
Dunkley, P.R. & Goodchild, A.K. 2010. Signal transduction pathways and
tyrosine hydroxylase regulation in the adrenal medulla following glucoprivation: An in vivo analysis. Neurochemistry
International 57(2): 162-167.
Bobrovskaya, L., Gelain, D.P., Gilligan, C., Dickson, P.W. & Dunkley,
P.R. 2007. PACAP stimulates the sustained phosphorylation of tyrosine
hydroxylase at serine 40. Cellular Signalling 19(6): 1141-1149.
Bobrovskaya, L., Dunkley,
P.R. & Dickson, P.W. 2004. Phosphorylation of Ser19 increases both Ser40
phosphorylation and enzyme activity of tyrosine hydroxylase in intact cells. Journal
of Neurochemistry 90(4): 857-864.
Brodows, R.G., Pi-Sunyer, F.X. & Campbell, R.G. 1975. Sympathetic control
of hepatic glycogenolysis during glucopenia in man. Metabolism: Clinical and
Experimental 24(5): 617-624.
Campbell,
D.G., Hardie, D.G. & Vulliet, P.R. 1986.
Identification of four phosphorylation sites in the N-terminal region of
tyrosine hydroxylase. Journal of Biological Chemistry 261(23):
10489-10492.
Doggrell, S.A. &
Brown, L. 1998. Rat models of hypertension, cardiac hypertrophy and failure. Cardiovascular
Research 39(1):89-105.
Dronjak, S., Jezova, D. & Kvetnansky, R.
2004. Different effects of novel stressors on sympathoadrenal system activation
in rats exposed to long-term immobilization. Annals of the New York Academy
of Sciences 1018(1): 113-123.
Dunkley,
P.R., Bobrovskaya, L., Graham, M.E., Von Nagy-Felsobuki, E.I. & Dickson, P.W. 2004. Tyrosine hydroxylase
phosphorylation: Regulation and consequences. Journal of Neurochemistry 91(5):
1025-1043.
Eliasson,
K., Hjemdahl, P. & Kahan, T. 1983. Circulatory
and sympatho-adrenal responses to stress in
borderline and established hypertension. Journal of Hypertension 1(2):
131-139.
Esler, M. 2011. The
sympathetic nervous system through the ages: From Thomas Willis to resistant
hypertension. Experimental Physiology 96(7): 611-622.
Goldstein,
D.S., Breier, A., Wolkowitz,
O.M., Pickar, D. & Lenders, J.W. 1992. Plasma
levels of catecholamines and corticotrophin during acute glucopenia induced by
2-deoxy-D-glucose in normal man. Clinical Autonomic Research 2(6):
359-366.
Gordon,
S.L., Bobrovskaya, L., Dunkley, P.R. & Dickson,
P.W. 2009. Differential regulation of human tyrosine hydroxylase isoforms 1 and
2 in situ: Isoform 2 is not phosphorylated at Ser35. Biochimica et Biophysica Acta 1793(12): 1860-1867.
Grobecker, H., Saavedra,
J.M. & Weise, V.K. 1982. Biosynthetic enzyme activities and catecholamines
in adrenal glands of genetic and experimental hypertensive rats. Circulation
Research 50(5): 742-746.
Guo,
X. & Wakade, A.R. 1994. Differential secretion of
catecholamines in response to peptidergic and
cholinergic transmitters in rat adrenals. Journal of Physiology 475(3):
539-545.
Haycock,
J.W. 1996. Short- and long-term regulation of tyrosine hydroxylase in
chromaffin cells by VIP and PACAP. Annals of the New York Academy of
Sciences 805(1): 219-230.
Haycock,
J.W. 1993. Multiple signaling pathways in bovine chromaffin cells regulate
tyrosine hydroxylase phosphorylation at Ser19, Ser31, and Ser40. Neurochemical
Research 18(1): 15-26.
Haycock,
J.W. & Wakade, A.R. 1992. Activation and
multiple-site phosphorylation of tyrosine hydroxylase in perfused rat adrenal
glands. Journal of Neurochemistry 58(1): 57-64.
Haycock,
J.W., Ahn, N.G., Cobb, M.H. & Krebs, E.G. 1992.
ERK1 and ERK2, two microtubule-associated protein 2 kinases, mediate the
phosphorylation of tyrosine hydroxylase at serine-31 in situ. Proceedings of
the National Academy of Sciences of the United States of America 89(6):
2365-2369.
Komanicky, P., Reiss, D.L., Dale, S.L. & Melby, J.C.
1982. Role of adrenal steroidogenesis in etiology of hypertension in the
spontaneously hypertensive rat. Endocrinology 111(1): 219-224.
Kumai,
T., Tanaka, M., Watanabe, M. & Kobayashi, S. 1994. Elevated tyrosine
hydroxylase mRNA levels in the adrenal medulla of spontaneously hypertensive
rats. Japanese Journal of Pharmacology 65(4): 367-369.
Lambert,
G.W., Eisenhofer, G., Cox, H.S., Horne, M., Kalff, V., Kelly, M., Jennings, G.L. & Esler, M.D. 1991. Direct determination of homovanillic acid release from the human brain, an
indicator of central dopaminergic activity. Life Sciences 49(15):
1061-1072.
Matsunaga,
H., Iguchi, A., Yatomi, A., Uemura,
K., Miura, H., Gotoh, M., Mano, T. & Sakamoto, N.
1989. The relative importance of nervous system and hormones to the
2-deoxy-D-glucose-induced hyperglycemia in fed rats. Endocrinology 124(3): 1259-1264.
McCarty,
R., Kvetnansky, R., Lake, C.R., Thoa,
N.B. & Kopin, I.J. 1978. Sympatho-adrenal
activity of SHR and WKY rats during recovery from forced immobilization. Physiology
& Behavior 21(6): 951-955.
Mirsky,
I.A., Kaplan, S.M., Podore, C.J. & Broh-Kahn, R.H. 1950. The insulin tolerance test in
patients with essential hypertension. Journal of Clinical Investigation 29(3): 297-301.
Moura,
E., Pinho Costa, P.M., Moura, D., Guimarães,
S. & Vieira-Coelho, M.A. 2005. Decreased tyrosine hydroxylase activity in
the adrenals of spontaneously hypertensive rats. Life Sciences 76(25):
2953-2964.
Mozaffari, M.S., Roysommuti, S. & Wyss, J.M. 1996.
Contribution of the sympathetic nervous system to hypertensive response to
insulin excess in spontaneously hypertensive rats. Journal of Cardiovascular
Pharmacology 27(4): 539-544.
Niijima, A. 1975. The
effect of 2-deoxy-D-glucose and D-glucose on the efferent discharge rate of
sympathetic nerves. Journal of Physiology 251(1): 231-243.
Norman Jr., R.A. & Dzielak, D.J., 1986. Spontaneous
hypertension is primarily the result of sympathetic overactivity and
immunologic dysfunction. Proceedings of the Society for Experimental Biology
and Medicine 182(4): 448-453.
Okamoto,
K. & Aoki, K. 1963. Development of a strain of spontaneously hypertensive
rats. Japanese Circulation Journal 27(3): 282-293.
Reinhard
Jr., J.F., Smith, G.K. & Nichol, C.A. 1986. A rapid and sensitive assay for
tyrosine-3-monooxygenase based upon the release of 3H2O
and adsorption of [3H]-tyrosine by charcoal. Life Sciences 39(23): 2185-2189.
Scheurink, A. & Ritter,
S. 1993. Sympathoadrenal responses to glucoprivation and lipoprivation in rats. Physiology &
Behavior 53(5): 995-1000.
Segura-Chama,
P., Rivera-Cerecedo, C.V., Gonzalez-Ramirez, R.,
Felix, R., Hernandez-Guijo, J.M. &
Hernandez-Cruz, A. 2012. A typical Ca2+ currents in chromaffin cells
from SHR and WKY rat strains result from the deficient expression of a splice
variant of the alpha1D Ca2+ channel. American Journal of
Physiology-Heart and Circulatory Physiology 302(2): H467-H478.
Vollmer,
R.R., Balcita, J.J., Sved,
A.F. & Edwards, D.J. 1997. Adrenal epinephrine and norepinephrine release
to hypoglycemia measured by microdialysis in
conscious rats. American Journal of Physiology-Regulatory, Integrative and
Comparative Physiology 273(5): R1758-R1763.
Wexler, B.C. 1980. Transplantation of pituitary and adrenal
glands of spontaneously hypertensive rats into hypophysectomized or
adrenalectomized, normotensive Sprague-Dawley rats. British Journal of
Experimental Pathology 61(4): 429-439.
Yamaguchi,
N. 1992. Sympathoadrenal system in neuroendocrine control of glucose:
Mechanisms involved in the liver, pancreas, and adrenal gland under hemorrhagic
and hypoglycemic stress. Canadian Journal of Physiology and Pharmacology 70(2): 167-206.
Zhang,
W. & Thorén, P. 1998. Hyper-responsiveness of
adrenal sympathetic nerve activity in spontaneously hypertensive rats to
ganglionic blockade, mental stress and neuronglucopenia. Pflügers Archiv -
European Journal of Physiology 437(1): 56-60.
*Corresponding author; email:
hanafi.damanhuri@ppukm.ukm.edu.my
|