Sains Malaysiana 50(2)(2021): 481-492

http://dx.doi.org/10.17576/jsm-2021-5002-19

 

The Effects of Acute Glucoprivation on Adrenomedullary Function in SHR and WKY Rats

(Kesan Deprivasi Glukosa Akut pada Fungsi Medula Adrenal pada Tikus SHR dan WKY)

 

HANAFI AHMAD DAMANHURI1*, PETER ROBERT DUNKLEY2 & ANN KATHLEEN GOODCHILD3

 

1Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Federal Territory, Malaysia

 

2School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, New South Wales, 2308, Australia

 

3Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia

 

Received: 11 March 2020/Accepted: 17 July 2020

 

ABSTRACT

We have shown previously, acute intraperitoneal administration of 2-deoxy-d-glucose (2DG) into Sprague-Dawley rats led to activation of the adrenal medulla chromaffin cells, indicated with increased protein kinase activity and increased tyrosine hydroxylase (TH) phosphorylation, as well as increased plasma adrenaline and glucose levels. Here we have used spontaneous hypertensive (SHR) and Wistar Kyoto (WKY) rats to investigate whether hypertension alters basal adrenal chromaffin cell function, or the response of these cells to acute 2DG treatment. At basal level, we found no differences in adrenal medulla TH protein, TH phosphorylation, TH activity or catecholamine levels between SHR and WKY despite a significant difference in the level of systolic blood pressure; nor were there differences in plasma catecholamine levels or blood glucose (BG). Furthermore, the vehicle animals evoked no significant changes in any parameter measured in SHR, but evoked significant increases in pSer19TH, plasma adrenaline and BG in WKY. Single episode of glucoprivation evoked increases in PKA and CDK/MAPK, pSer40TH, pSer31TH, TH activity, and plasma adrenaline and BG in SHR, and in addition evoked increases in PKC, CAMKII, and pSer19TH in WKY. These findings are significant which indicates hypertension does not impact catecholamine function in the adrenal gland. It also appears that hypertension does not alter the adrenal response to glucoprivation. The findings are also significant as WKY showed greater adrenal activation of protein kinases and TH phosphorylation in response to saline and 2DG when compared to SHR and possible reasons for these findings are further discussed.

 

Keywords: Adrenal gland; glucoprivation; hypertension; protein kinase; tyrosine hydroxylase

 

ABSTRAK

Kajian kami yang lepas telah menunjukkan bahawa pemberian intraperitoneal 2-deoksi-D-glukosa (2DG) akut kepada tikus Sprague-Dawley menyebabkan pengaktifan sel kromafin dalam medula adrenal yang ditunjukkan oleh peningkatan aktiviti protein kinase, pemfosforilan tirosina hidroksilase (TH), serta aras adrenalina dan plasma glukosa. Dalam kajian ini, kami telah menggunakan tikus hipertensi spontan (SHR) dan Wistar Kyoto (WKY) untuk mengkaji sama ada hipertensi akan mengubah fungsi bes sel kromafin adrenal serta tindak balas sel-sel tersebut terhadap rawatan 2DG akut. Pada peringkat bes, didapati tiada perbezaan pada aras protein TH, pemfosforilan TH, aktiviti TH atau aras katekolamina medula adrenal antara tikus SHR dan WKY walaupun terdapat perbezaan yang signifikan pada tahap tekanan darah sistolik; serta tiada perbezaan pada aras plasma katekolamina dan glukosa darah (BG). Tiada perubahan pada sebarang parameter yang diukur pada tikus pengangkut SHR, sebaliknya, terdapat peningkatan ketara pada pSer19TH, plasma adrenalina dan BG dalam tikus pengangkut WKY. Episod tunggal deprivasi glukosa mengakibatkan peningkatan pada PKA dan CDK/MAPK, pSer40TH, pSer31TH, aktiviti TH, plasma adrenalina dan BG dalam tikus SHR; di samping meningkatkan PKC, CAMKII dan pSer19TH pada tikus WKY. Hasil ini menunjukkan bahawa hipertensi tidak memberi kesan kepada fungsi katekolamina dalam kelenjar adrenal. Hipertensi turut tidak mengubah tindak balas adrenal kepada deprivasi glukosa. Tambahan pula, tikus WKY menunjukkan pengaktifan protein kinase dan pemfosforilan TH adrenal yang lebih tinggi sebagai tindak balas kepada saline dan 2DG berbanding SHR. Faktor yang mungkin menyebabkan penemuan ini turut dibincangkan dengan lebih lanjut.

 

Kata kunci: Deprivasi glukosa; hipertensi; kelenjar adrenal; protein kinase; tirosina hidroksilase

 

REFERENCES

Adebiyi, A.A., Akinosun, O.M., Nwafor, C.E. & Falase, A.O. 2011. Plasma catecholamines in Nigerians with primary hypertension. Ethnicity & Disease 21(2): 158-162.

Anton, A.H. & Sayre, D.F. 1962. A study of the factors affecting the aluminum oxide-trihydroxyindole procedure for the analysis of catecholamines. Journal of Pharmacology and Experimental Therapeutics 138(3): 360-375.

Bobrovskaya, L., Damanhuri, H.A., Ong, L.K., Schneider, J.J., Dickson, P.W., Dunkley, P.R. & Goodchild, A.K. 2010. Signal transduction pathways and tyrosine hydroxylase regulation in the adrenal medulla following glucoprivation: An in vivo analysis. Neurochemistry International 57(2): 162-167.

Bobrovskaya, L., Gelain, D.P., Gilligan, C., Dickson, P.W. & Dunkley, P.R. 2007. PACAP stimulates the sustained phosphorylation of tyrosine hydroxylase at serine 40. Cellular Signalling 19(6): 1141-1149.

Bobrovskaya, L., Dunkley, P.R. & Dickson, P.W. 2004. Phosphorylation of Ser19 increases both Ser40 phosphorylation and enzyme activity of tyrosine hydroxylase in intact cells. Journal of Neurochemistry 90(4): 857-864.

Brodows, R.G., Pi-Sunyer, F.X. & Campbell, R.G. 1975. Sympathetic control of hepatic glycogenolysis during glucopenia in man. Metabolism: Clinical and Experimental 24(5): 617-624.

Campbell, D.G., Hardie, D.G. & Vulliet, P.R. 1986. Identification of four phosphorylation sites in the N-terminal region of tyrosine hydroxylase. Journal of Biological Chemistry 261(23): 10489-10492.

Doggrell, S.A. & Brown, L. 1998. Rat models of hypertension, cardiac hypertrophy and failure. Cardiovascular Research 39(1):89-105.

Dronjak, S., Jezova, D. & Kvetnansky, R. 2004. Different effects of novel stressors on sympathoadrenal system activation in rats exposed to long-term immobilization. Annals of the New York Academy of Sciences 1018(1): 113-123.

Dunkley, P.R., Bobrovskaya, L., Graham, M.E., Von Nagy-Felsobuki, E.I. & Dickson, P.W. 2004. Tyrosine hydroxylase phosphorylation: Regulation and consequences. Journal of Neurochemistry 91(5): 1025-1043.

Eliasson, K., Hjemdahl, P. & Kahan, T. 1983. Circulatory and sympatho-adrenal responses to stress in borderline and established hypertension. Journal of Hypertension 1(2): 131-139.

Esler, M. 2011. The sympathetic nervous system through the ages: From Thomas Willis to resistant hypertension. Experimental Physiology 96(7): 611-622.

Goldstein, D.S., Breier, A., Wolkowitz, O.M., Pickar, D. & Lenders, J.W. 1992. Plasma levels of catecholamines and corticotrophin during acute glucopenia induced by 2-deoxy-D-glucose in normal man. Clinical Autonomic Research 2(6): 359-366.

Gordon, S.L., Bobrovskaya, L., Dunkley, P.R. & Dickson, P.W. 2009. Differential regulation of human tyrosine hydroxylase isoforms 1 and 2 in situ: Isoform 2 is not phosphorylated at Ser35. Biochimica et Biophysica Acta 1793(12): 1860-1867.

Grobecker, H., Saavedra, J.M. & Weise, V.K. 1982. Biosynthetic enzyme activities and catecholamines in adrenal glands of genetic and experimental hypertensive rats. Circulation Research 50(5): 742-746.

Guo, X. & Wakade, A.R. 1994. Differential secretion of catecholamines in response to peptidergic and cholinergic transmitters in rat adrenals. Journal of Physiology 475(3): 539-545.

Haycock, J.W. 1996. Short- and long-term regulation of tyrosine hydroxylase in chromaffin cells by VIP and PACAP. Annals of the New York Academy of Sciences 805(1): 219-230.

Haycock, J.W. 1993. Multiple signaling pathways in bovine chromaffin cells regulate tyrosine hydroxylase phosphorylation at Ser19, Ser31, and Ser40. Neurochemical Research 18(1): 15-26.

Haycock, J.W. & Wakade, A.R. 1992. Activation and multiple-site phosphorylation of tyrosine hydroxylase in perfused rat adrenal glands. Journal of Neurochemistry 58(1): 57-64.

Haycock, J.W., Ahn, N.G., Cobb, M.H. & Krebs, E.G. 1992. ERK1 and ERK2, two microtubule-associated protein 2 kinases, mediate the phosphorylation of tyrosine hydroxylase at serine-31 in situ. Proceedings of the National Academy of Sciences of the United States of America 89(6): 2365-2369.

Komanicky, P., Reiss, D.L., Dale, S.L. & Melby, J.C. 1982. Role of adrenal steroidogenesis in etiology of hypertension in the spontaneously hypertensive rat. Endocrinology 111(1): 219-224.

Kumai, T., Tanaka, M., Watanabe, M. & Kobayashi, S. 1994. Elevated tyrosine hydroxylase mRNA levels in the adrenal medulla of spontaneously hypertensive rats. Japanese Journal of Pharmacology 65(4): 367-369.

Lambert, G.W., Eisenhofer, G., Cox, H.S., Horne, M., Kalff, V., Kelly, M., Jennings, G.L. & Esler, M.D. 1991. Direct determination of homovanillic acid release from the human brain, an indicator of central dopaminergic activity. Life Sciences 49(15): 1061-1072.

Matsunaga, H., Iguchi, A., Yatomi, A., Uemura, K., Miura, H., Gotoh, M., Mano, T. & Sakamoto, N. 1989. The relative importance of nervous system and hormones to the 2-deoxy-D-glucose-induced hyperglycemia in fed rats. Endocrinology 124(3): 1259-1264.

McCarty, R., Kvetnansky, R., Lake, C.R., Thoa, N.B. & Kopin, I.J. 1978. Sympatho-adrenal activity of SHR and WKY rats during recovery from forced immobilization. Physiology & Behavior 21(6): 951-955.

Mirsky, I.A., Kaplan, S.M., Podore, C.J. & Broh-Kahn, R.H. 1950. The insulin tolerance test in patients with essential hypertension. Journal of Clinical Investigation 29(3): 297-301.

Moura, E., Pinho Costa, P.M., Moura, D., Guimarães, S. & Vieira-Coelho, M.A. 2005. Decreased tyrosine hydroxylase activity in the adrenals of spontaneously hypertensive rats. Life Sciences 76(25): 2953-2964.

Mozaffari, M.S., Roysommuti, S. & Wyss, J.M. 1996. Contribution of the sympathetic nervous system to hypertensive response to insulin excess in spontaneously hypertensive rats. Journal of Cardiovascular Pharmacology 27(4): 539-544.

Niijima, A. 1975. The effect of 2-deoxy-D-glucose and D-glucose on the efferent discharge rate of sympathetic nerves. Journal of Physiology 251(1): 231-243.

Norman Jr., R.A. & Dzielak, D.J., 1986. Spontaneous hypertension is primarily the result of sympathetic overactivity and immunologic dysfunction. Proceedings of the Society for Experimental Biology and Medicine 182(4): 448-453.

Okamoto, K. & Aoki, K. 1963. Development of a strain of spontaneously hypertensive rats. Japanese Circulation Journal 27(3): 282-293.

Reinhard Jr., J.F., Smith, G.K. & Nichol, C.A. 1986. A rapid and sensitive assay for tyrosine-3-monooxygenase based upon the release of 3H2O and adsorption of [3H]-tyrosine by charcoal. Life Sciences 39(23): 2185-2189.

Scheurink, A. & Ritter, S. 1993. Sympathoadrenal responses to glucoprivation and lipoprivation in rats. Physiology & Behavior 53(5): 995-1000.

Segura-Chama, P., Rivera-Cerecedo, C.V., Gonzalez-Ramirez, R., Felix, R., Hernandez-Guijo, J.M. & Hernandez-Cruz, A. 2012. A typical Ca2+ currents in chromaffin cells from SHR and WKY rat strains result from the deficient expression of a splice variant of the alpha1D Ca2+ channel. American Journal of Physiology-Heart and Circulatory Physiology 302(2): H467-H478.

Vollmer, R.R., Balcita, J.J., Sved, A.F. & Edwards, D.J. 1997. Adrenal epinephrine and norepinephrine release to hypoglycemia measured by microdialysis in conscious rats. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 273(5): R1758-R1763.

Wexler, B.C. 1980. Transplantation of pituitary and adrenal glands of spontaneously hypertensive rats into hypophysectomized or adrenalectomized, normotensive Sprague-Dawley rats. British Journal of Experimental Pathology 61(4): 429-439.

Yamaguchi, N. 1992. Sympathoadrenal system in neuroendocrine control of glucose: Mechanisms involved in the liver, pancreas, and adrenal gland under hemorrhagic and hypoglycemic stress. Canadian Journal of Physiology and Pharmacology 70(2): 167-206.

Zhang, W. & Thorén, P. 1998. Hyper-responsiveness of adrenal sympathetic nerve activity in spontaneously hypertensive rats to ganglionic blockade, mental stress and neuronglucopenia. Pflügers Archiv - European Journal of Physiology 437(1): 56-60.

 

*Corresponding author; email: hanafi.damanhuri@ppukm.ukm.edu.my

   

 

 

previous