Sains Malaysiana 49(12)(2020): 3117-3123
http://dx.doi.org/10.17576/jsm-2020-4912-24
Cobalt Sulfide as Photoelectrode of Photoelectrochemical Hydrogen Generation from Water
(Kobalt Sulfida sebagai Fotoelektrod untuk Penjanaan Hidrogen Fotoelektrokimia daripada Air)
MUSTAFID
AMNA RAMBEY1, KHUZAIMAH ARIFIN1*, LORNA JEFFERY MINGGU1 & MOHAMMAD B. KASSIM1,2
1Fuel
Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
2School
of Chemistry Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 6 August 2020/Accepted: 11 September 2020
ABSTRACT
This
study aimed to synthesize and characterize cobalt sulfide deposited on FTO by
hydrothermal method and investigate its photoelectrochemical (PEC) water splitting performance. Cobalt sulfide thin films were produced by
annealing at two different temperatures, namely, 400 and 500 °C. X-ray
diffraction (XRD) and Fourier transform Raman spectroscopy were used to
characterize the phase structure. Scanning electron microscopy was used to
observe the morphology. Ultraviolet-visible spectroscopy and linear sweep voltammetry
analyses were used to determine the thin-film band gap and evaluate the PEC
water splitting performance, respectively. From the XRD and Raman analyses, all
the samples produced consisted of mixed phases of Co3S4 and Co9S8. However, each sample contained different
percentage phases. The sample annealed at 400 °C contained more Co9S8,
whereas that annealed at 500 °C contained comparable amounts of Co3S4 and Co9S8. The morphologies of pre-annealed samples
showed vertical flakes with diameters around 200-250 nm and flake thickness
around 25-50 nm. When the temperature was increased from pre-annealing
temperature to 400 and 500 °C, several flakes were destructed and formed
spherical-like clusters. The Tauc plot from
absorption analysis showed that the samples annealed at 400 and 500 °C produced
similar band gaps at ~2.0 eV. The PEC performance analysis results show that
annealing at 400 °C produced the highest photocurrent density of 10 µA/cm2 at a potential of -0.7 V.
Keywords:
Cobalt sulphide; hydrogen production; hydrothermal; photoelectrochemical
ABSTRAK
Kajian ini bertujuan untuk mensintesis dan mencirikan kobalt sulfida yang dimendapkan pada FTO dengan kaedah hidrotermal dan mengkaji keupayaannya untuk pemisahan air fotoelektrokimia (PEC). Filem nipis kobalt sulfida yang terhasil disepuhlindap pada dua suhu yang berbeza, iaitu: 400 dan 500 °C. Analisis pembelauan sinar-X (XRD) dan spektroskopi transformasi Fourier Raman (Raman) digunakan untuk mencirikan struktur fasa. Mikroskopi elektron imbasan (SEM) digunakan untuk memerhatikan morfologi. Analisis spektroskopi ultraungu-nampak (UV-Vis) dan voltametri kilasan linear digunakan untuk menentukan sela jalur dan menilai prestasi pemisahan air PEC filem nipis tersebut. Daripada analisis XRD dan Raman, semua filem nipis yang dihasilkan terdiri daripada fasa campuran Co3S4 dan Co9S8. Walau bagaimanapun, filem nipis tersebut berisi peratusan fasa yang berbeza. Filem nipis yang disepuhlindap pada suhu 400 °C berisi lebih banyak Co9S8, sedangkan yang disepuhlindap pada 500 °C berisi jumlah Co3S4 dan Co9S8 yang lebih berimbang. Morfologi sampel pra-sepuhlindap menunjukkan kepingan menegak dengan diameter ̴ 200-250 nm dan ketebalan ̴ 25-50 nm. Selepas suhu dinaikkan daripada suhu pra-sepuhlindap kepada 400 dan 500 °C, beberapa kepingan hancur dan membentuk gumpalan seperti sfera. Plot Tauc daripada analisis penyerapan menunjukkan bahawa filem nipis disepuhlindap pada suhu 400 dan 500 °C menghasilkan sela jalur yang hampir sama ̴ 2.0 eV. Hasil analisis prestasi PEC mendapati bahawa filem nipis disepuhlindap pada suhu 400 °C mempunyai ketumpatan arus tertinggi sebesar 10 μA/cm2 pada potensi -0,7 V vs Ag/AgCl.
Kata kunci: Fotoelektrokimia; hidroterma; kobalt sulfida; pengeluaran hydrogen
REFERENCES
Adnan,
M.A.B., Arifin, K., Minggu,
L.J. & Kassim, M.B. 2018. Titanate-based
perovskites for photochemical and photoelectrochemical water splitting applications: A review. International
Journal of Hydrogen Energy 43(52): 23209-23220.
Boretti, A. & Rosa,
L. 2019. Reassessing the projections of the world water development report. npj Clean Water 2(15): 1-6.
Chen,
Z., Wan, Z., Yang, T., Zhao, M., Xingyan, Lv., Wang,
H., Ren, X. & Mei, X. 2016. Preparation of nickel cobalt sulfide hollow nanocolloids with enhanced electrochemical property for supercapacitors application. Scientific Reports 6(25151): 1-8.
Cheng,
L., Xiang, Q., Liao, Y. & Zhang, H. 2018. CdS-based photocatalysts. Energy
& Environmental Science 11(6): 1362-1391.
Fujishima, A.
& Honda, K. 1972. Electrochemical photolysis of water at a semiconductor
electrode. Nature 238: 37-38.
Gielen, D., Boshell,
F., Saygin, D., Bazilian,
M.D., Wagner, N. & Gorini, R. 2019. The role of
renewable energy in the global energy transformation. Energy Strategy Reviews 24: 38-50.
Hisatomi, T., Kubota, J.
& Domen, K. 2014. Recent advances in
semiconductors for photocatalytic and photoelectrochemical water splitting. Chemical Society Reviews 43(22): 7520-7535.
In,
S.I. & Lee, H.S. 2012. Low temperature synthesis of transparent, vertically
aligned anatase TiO2 nanowire arrays:
Application to dye sensitized solar cells. Bulletin
of the Korean Chemical Society 33(6): 1989-1992.
Kale,
S.B., Lokhande, V.C., Marje,
S.J., Patil, U.M., Kim, J.H. & Lokhande, C.D. 2020. Chemically deposited Co3S4 thin film: Morphology dependant electrocatalytic oxygen evolution reaction. Applied
Physics A 126(3): 206-215.
Kristl, M., Dojer,
B., Gyergyek, S. & Kristl,
J. 2017. Synthesis of nickel and cobalt sulfide nanoparticles using a low cost sonochemical method. Heliyon 3(3): e00273-e00273.
Lei, M., Zhang, R., Yang, H.J. & Wang, Y.G. 2012. Synthesis of well dispersed cobalt disulfide and their photoluminescence and magnetic properties. Materials Letters 76: 87-89.
Liu,
B., Kong, D., Zhang, J., Wang, Y., Chen, T., Cheng, C. & Yang, H.Y. 2016.
3D hierarchical Co3O4@Co3S4 nanoarrays as cathode materials for asymmetric pseudocapacitors. Journal
of Materials Chemistry A 4(9): 3287-3296.
Ma,
X., Zhang, W., Deng, Y., Zhong, C., Hu, W. & Han,
X. 2018. Phase and composition controlled synthesis of cobalt sulfide hollow nanospheres for electrocatalytic water splitting. Nanoscale 10(10):
4816-4824.
Makuła, P., Pacia, M. & Macyk, W. 2018.
How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–vis spectra. The Journal of Physical Chemistry Letters 9(23): 6814-6817.
Moridon, S.N.F., Salehmin, M.I., Mohamed, M.A., Arifin,
K., Minggu, L.J. & Kassim,
M.B. 2019. Cobalt oxide as photocatalyst for water
splitting: temperature-dependent phase structures. International Journal of Hydrogen Energy 44(47): 25495-25504.
Muradov, M.B., Balayeva, O.O., Azizov, A.A., Maharramov, A.M., Qahramanli,
L.R., Eyvazova, G.M. & Aghamaliyev,
Z.A. 2018. Synthesis and characterization of cobalt sulfide nanoparticles by sonochemical method. Infrared
Physics & Technology 89: 255-262.
Nan,
K., Du, H., Su, L. & Li, C.M. 2018. Directly electrodeposited cobalt
sulfide nanosheets as advanced catalyst for oxygen
evolution reaction. ChemistrySelect 3(25): 7081-7088.
Ng,
K.H., Minggu, L.J., Jaafar,
N.A., Arifin, K. & Kassim,
M.B. 2017. Enhanced plasmonic photoelectrochemical response of Au sandwiched WO3 photoanodes. Solar Energy Materials and Solar Cells 172: 361-367.
Pawar, A.S. & Garje,
S.S. 2015. Synthesis of Co9S8 and CoS nanocrystallites using Co(II) thiosemicarbazone complexes as single-source precursors. Bulletin
of Materials Science 38(7): 1843-1850.
Rosman, N.N., Yunus,
R.M., Minggu, L.J., Arifin,
K., Salehmin, M.N.I., Mohamed, M.A. & Kassim, M.B. 2018. Photocatalytic properties of two-dimensional
graphene and layered transition-metal dichalcogenides based photocatalyst for photoelectrochemical hydrogen generation: An overview. International
Journal of Hydrogen Energy 43(41): 18925-18945.
Salehmin, M.N.I., Minggu, L.J., Arifin, K., Yunus, R.M., Mohamed, M.A. & Kassim,
M.B. 2019. Recent advances on state-of-the-art copper (I/II) oxide as photoelectrode for solar green fuel generation: Challenges
and mitigation strategies. Applied
Catalysis A 582(117104): 1-28.
Sathre, R., Greenblatt, J.B., Walczak, K., Sharp, I.D., Stevens, J.C., Ager, J.W. & Houle, F.A. 2016. Opportunities to improve the net energy
performance of photoelectrochemical water-splitting
technology. Energy & Environmental
Science 9(3): 803-819.
Staffell, I., Scamman, D., Velazquez Abad, A., Balcombe, P., Dodds, P.E., Ekins, P., Shah, N. & Ward, K.R. 2019. The
role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science 12(2): 463-491.
Sultana,
U.K., He, T., Du, A. & O'Mullane, A.P. 2017. An
amorphous dual action electrocatalyst based on oxygen
doped cobalt sulfide for the hydrogen and oxygen evolution reactions. RSC Advances 7(87): 54995-55004.
Sun,
W.T., Yu, Y., Pan, H.Y., Gao, X.F., Chen, Q. & Peng, L.M. 2008. CdS quantum dots sensitized TiO2 nanotube-array photoelectrodes. Journal
of the American Chemical Society 130(4): 1124-1125.
Wang,
M., Chang, Y.S., Tsao, C.W., Fang, M.J., Hsu, Y.J.
& Choy, K.L. 2019. Enhanced photoelectrochemical hydrogen generation in neutral electrolyte using non-vacuum processed CIGS
photocathodes with an earth-abundant cobalt sulfide catalyst. Chemical Communications 55(17):
2465-2468.
Wang,
T., Liu, M. & Ma, H. 2017. Facile synthesis of flower-like copper-cobalt
sulfide as binder-free faradaic electrodes for supercapacitors with improved electrochemical properties. Nanomaterials 7(6): 140-150.
Yin,
P.F., Sun, L.L., Gao, Y.L. & Wang, S.Y. 2008. Preparation and
characterization of Co9S8 nanocrystalline and nanorods. Bulletin
of Materials Science 31(4): 593-596.
*Corresponding
author; email: khuzaim@ukm.edu.my
|