Sains Malaysiana 49(12)(2020): 3081-3087
http://dx.doi.org/10.17576/jsm-2020-4912-20
Mechanical Strength Enhancement of Porous Nanocrystalline-Silicon
(pnc-Si) Membrane via Titanium-oxide (Ti-O)
Coating
(Peningkatan Kekuatan MekanikalMembran Silikon Nano-kristal Poros (pnc-Si) dengan Penglitup Titanium-oksida (Ti-O))
RHONIRA LATIF*, MUHAMMAD FAHMI JAAFAR, MOHD FAIZAL AZIZ &
BURHANUDDIN YEOP MAJLIS
Institut Kejuruteraan Mikro dan Nanoelektronik, Universiti Kebangsaan Malaysia, Jalan Bangi, 43600 Bangi, Selangor Darul Ehsan,
Malaysia
Received: 19 August 2020/Accepted: 27 August
2020
ABSTRACT
Porous nanocrystalline silicon (pnc-Si)
membrane is mainly studied as a blood filtration membrane, mimicking the
glomerulus filtration membrane of a human kidney. However, the pnc-Si material itself is not hemocompatible and enormous membrane area to thickness ratio makes the membrane to be easily
fractured. Silicon surface modification via titanium-oxide (Ti-O)
thin film layer deposition has been proven to be hemocompatible and the presence of Ti-O layer has been numerically
studied to give higher membrane flexural strength. In this work, square pnc-Si membranes of 2 mm × 2 mm × 20 nm size have been
fabricated with and without Ti-O layer. Point
loading-unloading nanoindentation method has been
performed and the membranes’ displacement behaviour subjected to point loads is
studied. The pnc-Si membranes with Ti-O layer were found to attain higher fracture
strength, membrane bending stiffness and average hardness with the increase of
~20, ~11 and ~24%, respectively, compared to bare pnc-Si membranes. The mechanical strength of a
free-standing pnc-Si membrane is improved by
depositing a Ti-O thin film layer on the membrane
structure.
Keywords: Mechanical strength; nanoindentation; pnc-Si membrane; Ti-O thin film
ABSTRAK
Membran silikon nano-kristal poros (pnc-Si) dikaji sebagai membran penapisan darah, meniru membran penapisan glomerulus buah pinggang manusia. Walau bagaimanapun, bahan pnc-Si itu sendiri tidakhemoserasi dan nisbah keluasan membran kepada ketebalan adalah sangat besar yang menjadikan membran mudah patah. Pengubahsuaian permukaan silikon melalui pemendapan lapisan filem tipis titanium-oksida (Ti-O) telah terbuktihemoserasi dan kehadiran lapisan Ti-O telah dikaji secara analisis berangka bahawa lapisan tambahan ini mampu memberikan kekuatan lenturan membran yang lebih tinggi. Dalam kajian ini, membran pnc-Si yang berbentuk petak dan berukuran 2 mm × 2 mm × 20 nm telah difabrikasi dengan dan tanpa lapisan Ti-O. Kaedah pelekukan nano pemuatan-bongkar titik telah dilakukan dan tingkah laku anjakan membran yang dikenakan daya titik dikaji. Membran pnc-Si dengan lapisan Ti-O didapati mempunyai nilai kekuatan fraktur, kekakuan lenturan membran dan purata kekerasan yang lebih baik dengan peningkatan masing-masing sebanyak ~
20, ~ 11 dan ~ 24% berbanding dengan membran pnc-Si tanpa salut. Kekuatan mekanikal membran pnc-Si yang berdiri bebas telah ditambah baik dengan meletakkan lapisan filem nipis Ti-O pada struktur membran.
Kata kunci: Filem nipis Ti-O; kekuatan mekanik; membran pnc-Si; pelekukan nano
REFERENCES
Agrawal, A.A., Nehilla, B.J., Reisig, K.V., Gaborski, T.R., Fang, D.Z., Striemer,
C.C., Fauchet, P.M. & McGrath, J.L. 2010. Porous nanocrystalline silicon membranes
as highly permeable and molecularly thin substrates for cell culture. Biomaterials 31(20): 5408-5417.
Ahmadi, M., Gorbet, M. & Yeow, J.T.W.
2013. In vitro clearance
and hemocompatibility assessment of ultrathin nanoporous silicon membranes for hemodialysis applications using human whole blood. Blood
Purification 35(4): 305-313.
Albrektsson, T., Brånemark,
P.I., Hansson, H.A., Kasemo, B., Larsson, K., Lundström, I., McQueen, D.H. & Skalak,
R. 1983. The interface zone of inorganic
implants in vivo: Titanium implants
in bone. Annals of Biomedical Engineering 11(1): 1-27.
DesOrmeaux, J.P.S., Winans,
J.D., Wayson, S.E., Gaborski,
T.R., Khire, T.S., Striemer,
C.C. & McGrath, J.L. 2014. Nanoporous silicon
nitride membranes fabricated from porous nanocrystalline silicon
templates. Nanoscale 6(18):
10798-10805.
Fang, D.Z., Striemer, C.C., Gaborski, T.R.,
McGrath, J.L. & Fauchet, P.M. 2010. Methods for
controlling the pore properties of ultra-thin nanocrystalline silicon membranes. Journal of Physics:
Condensed Matter 22(45): 454134.
Gaborski, T.R., Snyder, J.L., Striemer,
C.C., Fang, D.Z., Hoffman, M., Fauchet, P.M. & McGrath,
J.L. 2010. High-performance separation of nanoparticles with ultrathin porous nanocrystalline silicon membranes. ACS Nano 4(11):
6973-6981.
Huang, N., Yang, P., Leng, Y.X., Chen, J.Y., Sun, H., Wang, J., Wang, G.J.,
Ding, P.D., Xi, T.F. & Leng, Y. 2003. Hemocompatibility of titanium oxide films. Biomaterials 24(13): 2177-2187.
Jaafar, M.F., Latif, R. & Majlis,
B.Y. 2018. Influence of titanium oxide coating on mechanical properties of
porous nanocrystalline silicon membrane. 2018 IEEE International Conference on
Semiconductor Electronics (ICSE). pp. 49-52.
Johnson, D.G., Khire, T.S., Lyubarskaya, Y.L.,
Smith, K.J.P., DesOrmeaux, J.P.S., Taylor, J.G., Gaborski, T.R., Shestopalov,
A.A., Striemer, C.C. & McGrath, J.L. 2013.
Ultrathin silicon membranes for wearable dialysis. Advances in Chronic Kidney Disease 20(6): 508-515.
Jȯzwik, M., Delobelle, P., Gorecki,
C., Sabac, A., Nieradko,
L., Meunier, C. & Munnik,
F. 2004. Optomechanical characterisation of
compressively prestressed silicon oxynitride films deposited by plasma-enhanced chemical vapour deposition on silicon
membranes. Thin Solid Films 468(1-2):
84-92.
Kasemo, B. & Lausmaa,
J. 1985. Metal selection and surface characteristics. In Tissue-Integrated Prostheses, edited by Brånemark,
P-I., Zarb, G. & Albrektsson,
T. Chicago: Quintessence Publishing Co.
Lausmaa, J., Kasemo, B.
& Mattsson, H. 1990. Surface spectroscopic
characterization of titanium implant materials. Applied Surface Science 44(2): 133-146.
Li, Y., Chen, Y., Liu, J.R., Hu, Q.M. &
Yang, R. 2016. Cooperative effect of silicon and other alloying elements on
creep resistance of titanium alloys: Insight from first-principles
calculations. Scientific Reports 6:
30611.
Martins, P., Delobelle,
P., Malhaire, C., Brida, S.
& Barbier, D. 2009. Bulge test and AFM point
deflection method, two technics for the mechanical characterisation of very low
stiffness freestanding films. The
European Physical Journal Applied Physics 45(1): 10501.
Merle, B., Nicholson, K.S., Herbert, E.G.
& Göken, M. 2016. An improved method for point
deflection measurements on rectangular membranes. Materials & Design 109: 485-491.
Ozaki,
T., Koga, T., Fujitsuka, N., Makino, H., Hohjo, H. & Kadoura, H. 2018. Biaxial flexure testing of
free-standing thin film membrane with nanoindentation system. Sensors and Actuators A: Physical 278: 48-59.
Parr, G.R., Gardner, L.K.
& Toth, R.W. 1985. Titanium: The mystery metal of
implant dentistry. Dental materials aspects. Journal of Prosthetic Dentistry 54(3): 410-414.
Poilane, C., Delobelle, P., Lexcellent,
C., Hayashi, S. & Tobushi, H. 2000. Analysis of
the mechanical behavior of shape memory polymer
membranes by nanoindentation, bulging and point
membrane deflection tests. Thin Solid
Films 379(1-2): 156-165.
Qin, H., Jin, J.,
Peng, X. & Ichinose, I. 2010. Mechanical properties of free-standing single
layers of metallic nanocrystals. Journal
of Materials Chemistry 20(5): 858-861.
Steinemann, S. 1991. The properties of titanium. In Oral Implantol:
Basics, ITI Hollow Cylinder System, edited by Schroeder, A., Sutter, F.
& Krekeler, G. Stuttgart: Thieme.
Wang, T.H., Fang, T.H., Kang, S.H. &
Lin, Y.C. 2007. Nanoindentation characteristics of
clamped freestanding Cu membranes. Nanotechnology 18(13): 135701.
Williams, D.F. 1981. Fundamental Aspects of Biocompatibility.
Boca Raton: CRC Press.
*Corresponding author; email: rhonira@ukm.edu.my
|