Sains Malaysiana 49(10)(2020):
2513-2525
http://dx.doi.org/10.17576/jsm-2020-4910-17
Formulation
of Metformin-Loaded Alginate Microspheres by Ionotropic Gelation-Aerosolization Technique
(Formulasi Mikrosfera Alginat
Muatan-Metformin oleh Pengegelan Ionotropik- Kaedah Aerosol)
DEWI MELANI HARIYADI1*, YASHWANT PATHAK1,2, ESTI HENDRADI1,
TRISTIANA ERAWATI1, IZZATUL HIDAYAH1 & ELIZABETH
SANTOS1
1Pharmaceutics
Department, Faculty of Pharmacy, Universitas Airlangga, 60286, Indonesia
2College of Pharmacy, University
of South Florida, 33612, United States of America
Received: 26 December 2019/Accepted: 18 April 2020
ABSTRACT
Metformin hydrochloric acid
(HCl)-loaded alginate microspheres prepared using aerosolization method were
subsequently evaluated for their physico-chemical characteristics in terms of particle size,
morphology, drug loading, entrapment efficiency, yield and in vitro release. A two factorial Design of Experiment (DoE) was used to study the
influence of polymer alginate and cross-linker calcium chloride (CaCl2) concentrations on microparticle characteristics. The results indicated that all
microspheres were spherical in shape, while their particle size was less than 5 µm, although this increased with the
intensification of alginate and CaCl2 concentrations. Encapsulation efficiency,
loading, and yield were all enhanced by increasing alginate concentration and,
conversely, decreasing CaCl2 concentration.
The highest encapsulation efficiency, loading, and yield were 40, 31, and 73%,
respectively, produced
by a formula containing 1.75% alginate and 3% CaCl2. The
drug release of Metformin-loaded microparticles in HCl pH 1.2 ranged from
22 to 28% during a two-hour
period, while
further drug release of PBS pH
7.4
increased from 67 to 95% over ten
hours. The total amount of drug released during a 12-h period increased by reducing alginate
concentration. Furthermore, a kinetic study of
the dissolution data confirmed the prevalence of a diffusion-controlled
mechanism or Higuchi pattern of drug release.
Keywords:
Aerosolization; alginate microspheres; design of experiment; metformin
ABSTRAK
Mikrosfera alginat muatan-metformin asid
hidroklorik (HCl) yang disediakan menggunakan kaedah aerosol telah dinilai
untuk ciri fizikal-kimia berdasarkan saiz zarah, morfologi, muatan ubat,
kecekapan pemerangkapan, kadar hasil dan pelepasan in vitro. Dua reka
bentuk uji kaji (DoE) faktoran digunakan untuk mengkaji pengaruh alginat
polimer dan kepekatan penghubung silang kalsium klorida (CaCl2) pada
ciri mikrozarah. Keputusan kajian menunjukkan bahawa kesemua mikrosfera
mempunyai bentuk sfera, manakala saiz zarah kurang daripada 5 µm, walaupun ia
meningkat dengan pengamatan alginat dan kepekatan CaCl2. Kecekapan
pengapsulan, muatan, kadar hasil kesemuanya dipertingkat dengan peningkatan
kepekatan alginat dan sebaliknya penurunan kepekatan CaCl2.
Kecekapan pengkapsulan, muatan dan kadar hasil tertinggi masing-masing adalah
40,31 dan 73%, dihasilkan dengan formula yang mengandungi alginat 1.75% dan
CaCl2 3%. Perlepasan ubat mikrozarah muatan-metformin dalam HCl pH
1.2 berjulat antara 22 sehingga 28% ketika tempoh dua jam, manakala perlepasan
ubat daripada PBS pH 7.4 meningkat daripada 67 sehingga 95% dalam masa 10 jam.
Jumlah keseluruhan perlepasan ubat ketika tempoh 12 jam meningkat dengan penurunan
kepekatan alginat. Selain itu, kajian kinetik berkenaan data perlarutan
memperakui prevalens mekanisme terkawal-penyerapan atau pola Higuchi perlepasan
ubat.
Kata kunci: Aerosol; metformin; mikrosfera
alginat; reka bentuk uji kaji
REFERENCES
Balasubramaniam,
J., Rao, V.U., Vasudha, M., Babu, J. & Rajinikanth, P.S. 2007. Sodium alginate microspheres of metformin
HCl: Formulation and in vitro evaluation. Current Drug Delivery 4(3): 294-256.
Banerjee,
A., Qi, J., Gogoi, R., Wong, J. & Mitragotri, S. 2016. Role of nanoparticle
size, shape and surface chemistry in oral drug delivery. Journal of
Controlled Release 238: 176-185.
Choudhury,
P.K. & Kar, M. 2009. Controlled release metformin hydrochloride
microspheres of ethyl cellulose prepared by different methods and study on the
polymer affected parameters. Journal of Microencapsulation 26(1): 46-53.
Dashora,
A. & Jain, C.P. 2009. Development and characterization of
pectinprednisolone microspheres for colon targeted delivery. International
Journal of ChemTech Research 1(3): 751-757.
De,
S., Miller, D.W. & Robinson, D.H. 2015. Effect of particle size of
nanospheres and microspheres on the cellular-association and cytotoxicity of
paclitaxel in 4T1 cells. Pharmaceutical Research 22: 766-775.
Déat-Lainé,
E., Hoffart, V., Garrait, G. & Beyssac, E. 2013a. Whey protein and alginate
hydrogel microparticles for insulin intestinal absorption: Evaluation of
permeability enhancement properties on Caco-2 cells. Int. J. Pharm. 453(2): 336-342.
Déat-Lainé,
E., Hoffart, V., Garrait, G., Jarrige, J.F., Cardot, J.M., Subirade, M. &
Beyssac, E. 2013b. Efficacy of mucoadhesive
hydrogel microparticles of whey
protein and alginate for oral insulin delivery. Pharmaceutical Research 30(3): 721-734.
Ghodake,
J.D., Vidhate, J.S., Shinde, D.A. & Kadam, A.N. 2010. Formulation and
evaluation of floating microsphere containing anti-diabetic (metformin
hydrochloride) drug. International Journal of PharmTech Research 2(1):
378-384.
Hariyadi, D.M., Purwanti, T., Kusumawati, I., Nirmala, R.N. &
Maindra, H.M.C. 2015. Physical characterization and in vivo study of
ovalbumin encapsulated in alginate microspheres. International Journal of
Drug Delivery Technology 5(2): 48-53.
Hasan,
A.A., Madkor, H. & Wageh, S. 2012. Formulation and evaluation of metformin
hydrochloride beads by ionotropic gelation technique. Journal of
Pharmaceutical and Scientific Innovation 1(1): 75-78.
Hébrard, G., Hoffart, V., Cardot, J.M., Subirade, M. &
Beyssac, E. 2013. Development and characterization of
coated-microparticles based on whey protein/alginate using the encapsulator
device. Drug Development and Industrial Pharmacy 39(1): 128-137.
Hébrard, G., Hoffart, V., Beyssac, E., Cardot, J.M.,
Alric, M. & Subirade, M. 2010. Coated whey protein/alginate microparticles as oral controlled delivery
systems for probiotic yeast. Journal of Microencapsulation 27(4):
292-302.
Jia,
L. 2005. Nanoparticle formulation increases oral bioavailability of poorly soluble
drugs: Approaches experimental evidences and theory. Current Nanoscience 1(3): 237-243.
Joshi,
S., Patel, P., Lin, S. & Madan, P.L. 2012. Development of cross-linked
alginate spheres by ionotropic gelation tecnique for controlled release of
naproxen orally. Asian Journal of Pharmacetical Science 7(1): 134-142.
Manjanna,
K.M., Kumar, T.P. & Shivakumar, B. 2010. Calcium alginate cross-linked
polymeric microbeads for oral sustained drug delivery in arthritis. Drug
Discoveries & Therapeutics 4(2): 109-122.
Morishita,
M., Goto, T., Peppas, N.A., Joseph, J.I., Torjman, M.C., Munsick, C., Nakamura,
K., Yamagata, T., Takayama, K. & Lowman, A.M. 2004. Mucosal insulin
delivery systems based on complexation polymer hydrogels: Effect of particle
size on insulin enteral absorption. Journal of Controlled Release 97(1):
115-124.
Nagpal, M., Maheshwari, D.K., Rakha, P., Dureja, H., Goyal, S. &
Dhingra, G. 2012. Formulation development and evaluation of alginate
microspheres of ibuprofen. Journal of Young Pharmacists 4(1): 13-16.
Nayak,
A.K., Pal, D., Pradhan, J. & Hasnain, M.S. 2013. Fenugreek seed
mucilage-alginate mucoadhesive beads of Metformin HCl: Design, optimization and
evaluation. International Journal of Biological Macromolecules 54:
144-154.
Nethaji,
R., Narayanan, A., Palanivelu, M., Surendiran, N.S. & Ganesan, B. 2016.
Formulation and evaluation of metformin hydrochloride loaded mucoadhesive
microspheres. International Journal of Pharmaceutical, Chemical and
Biological Sciences 6(2): 124-132.
Pan,
Y., Zheng, J.M., Zhao, H.Y., Li, Y.J., Xu, H. & Wei, G. 2002. Relationship between drug effects and
particle size of insulin-loaded bioadhesive microspheres. Acta
Pharmacologica Sinica 23(11): 1051-1056.
Pawar,
A., Gadhe, A., Venkatachalam, P., Sher, P. & Mahadik, K. 2008. Effect of
core and surface cross-linking on the entrapment of metronidazole in pectin
beads. Acta Pharmaceutica 58: 75-85.
Rani,
B.S., Reddy, A.B., Sai, E.L., Lakshmi, K. & Chandrika, M.V. 2012. Mucoadhesive microbeads of Metformin HCl: A promising
sustained drug delivery system. International Research Journal of
Pharmacy 3(5): 263-274.
Reineke,
J.J., Cho, D.Y., Dingle, Y.T., Morello, A.P., Jacob, J., Thanos, C.G. &
Mathiowitz, E. 2013. Unique insights into the intestinal absorption, transit,
and subsequent biodistribution of polymer-derived microspheres. Applied
Biological Sciences 110 (34): 13803-13808.
Rijal,
M.A.S., Mikail, A. & Sari, R. 2010. Pengaruh pH larutan tripolifosfat
terhadap karakteristik fisik serta profil pelepasan mikropartikel
teofilin-chitosan. Majalah Farmasi Airlangga 8(2): 28-33.
Rizvi,
S.A. & Saleh, A.M. 2018. Applications of nanoparticle systems in drug
delivery technology. Saudi Pharmaceutical Journal 6(1): 64-70.
Singh,
A., Maiti, A. & Mittal, A. 2014. Formulation evaluation of sustained
release floating beads of Metformin Hydrochloride using Sodium Alginate. International
Journal of Pharma Professional Research 5(1): 953-957.
Suksamran,
T., Opanasopit, P., Rojanarata, T., Ngawhirunpat, T., Ruktanonchai, U. &
Supaphol, P. 2009. Biodegradable alginate microparticles developed by
electrohydrodynamic spraying techniques for oral delivery of protein. Journal
of Microencapsulation 26(7): 563-570.
Venkateswara
Rao, T., Bhadramma, N., Raghukiran Cvs, & Madubabu, K. 2013. Design and
development of metformin hydrochloride trilayered sustained release tablets. Indian
Journal of Research in Pharmacy and Biotechnology November - December 2013:
893-897. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.429.2987.
*Corresponding author;
email: dewi-m-h@ff.unair.ac.id
|