Sains Malaysiana 48(12)(2019): 2817–2830
http://dx.doi.org/10.17576/jsm-2019-4812-23
A
New Classification of Hemirings through Double-Framed Soft
h-Ideals
(Pengelasan Baru Hemirings melalui h-Ideals
Lembut-Dua Kerangka)
FAIZ
MUHAMMAD KHAN1,4*,NIEYUFENGU1, HIDAYAT ULLAH KHAN2 & ASGHAR KHAN3
1Department
of Applied Mathematics, School of Natural and Applied Sciences,
Northwestern Polytechnical University Xi'an, Shaanxi, PR China
2Department
of Mathematics, University of Malakand, Lower Dir Chakddara, KP,
Pakistan
3Department
of Mathematics, Abdul Wali Khan University Mardan, Mardan, KP, Pakistan
4Department
of Mathematics and Statistics, University of Swat, KP, Pakistan
Received: 21 February 2019/Accepted:
23 December 2019
ABSTRACT
Due
to lack of parameterization, various ordinary uncertainty theories
like theory of fuzzy sets, and theory of probability cannot solve
complicated problems of economics and engineering involving uncertainties.
The aim of the present paper was to provide an
appropriate mathematical tool for solving such type of complicated
problems. For the said purpose, the notion of double-framed soft
sets in hemirings is introduced. As h-ideals of hemirings
play a central role in the structural theory, therefore, we developed a new type of subsystem of
hemirings. Double-framed soft left (right)
h-ideals, double-framed soft h-bi-ideals and double-framed
soft h-quasi-ideals
of hemiring R are determined.
These concepts are elaborated through suitable examples. Furthermore,
we are bridging ordinary h-ideals and
double-framed soft h-ideals of hemirings through double-framed soft including sets and characteristic
double-framed soft functions. It is also shown that every double-framed
soft h-quasi-ideal is
double-framed soft h-bi-ideal but the
converse inclusion does not hold. A well-known class of hemrings
i.e. h-hemiregular
hemirings is characterized by the properties
of these newly developed double-framed soft h-ideals of R.
Keywords: DFS h-bi-ideal;
DFS h-hemiregularhemirin;
DFS h-quasi-idealg; DFS sets; h-ideals
ABSTRAK
Disebabkan oleh kekurangan
pemparameteran, pelbagai
teori ketidakpastian biasa seperti teori
set kabur dan
teori kebarangkalian tidak boleh menyelesaikan
masalah ekonomi
dan kejuruteraan yang rumit yang melibatkan ketidakpastian. Tujuan penulisan kertas
ini adalah untuk menyediakan satu alat matematik
yang sesuai untuk
menyelesaikan masalah rumit yang sedemikian. Untuk tujuan tersebut,
satu tanggapan
set lembut dual kerangka dalam hemirings diperkenalkan. Oleh kerana h-ideals hemiring memainkan
peranan utama
dalam teori struktur,
maka kami telah
membangunkan satu jenis subsistem hemiring baru.
h-ideals lembut kiri (kanan) dual kerangka, h-dwi-ideal lembut dual kerangka dan h-separa-ideal lembut dual kerangka hemirings ditentukan.
Konsep
ini dihuraikan melalui contoh yang sesuai. Selain itu, kami menghubungkan h-ideals biasa dan h-ideals
lembut dual kerangka
hemirings melalui set lembut dual kerangka dan pencirian fungsi
lembut dual kerangka.
Kajian ini juga menunjukkan bahawa setiap h-quasi-ideal
lembut dual bingkai
adalah h-dwi-ideal lembut dual kerangka tetapi rangkuman akas tidak dapat bertahan.
Satu
kelas hemirings terkenal iaitu h-hemisekata hemirings dicirikan
oleh sifat h-ideals
dua bingkai
lembut daripada R yang baru dibangunkan ini.
Kata kunci: Set DFS; DFS h-dwi-ideal; DFS h-hemisekata hemiring; h-ideal; DFS h-separa-ideal
REFERENCES
Acar, U., Koyuncu, F. & Tanay, B. 2010.
Soft sets and soft rings. Comput.
Math. Appl. 59: 3458-3463.
Aho, A.W. & Ullman, J.D. 1976.
Introduction to Automata Theory. Languages and Computation.
Reading: Addison Wesley.
Ali,
M.I., Shabir, M. & Naz,
M. 2011. Algebraic structure of soft sets associated with new operations.
Comput. Math. Appl. 61: 2647-2654.
Ali,
M.I., Feng, F., Min, W.K. & Shabir,
M. 2009. On some new operations in soft set theory. Comput.
Math. Applic. 57: 1547-1553.
Atagun, A.O. & Sezgin, A. 2011. Soft substructures of rings, fields and modules.
Comput. Math. Appl. 61:
592-601.
Benson,
D.G. 1989. Bialgebra: Some foundations
for distributed and concurrent computation. Fundam.
Inf. 12: 427-486.
Cagman, N. & Enginoglu, S. 2011. FP-soft set theory and its applications.
Ann. Fuzzy Math. Inform. 2: 219-226.
Çagman, N. & Enginoglu, S. 2010a. Soft matrix theory and its decision making.
Comput. Math. Appl. 59:
3308-3314.
Çagman, N. & Enginoglu, S. 2010b. Soft set theory and uni-int decision making. Eur. J. Oper.
Res. 207: 848-855.
Conway,
J.H. 1971. Regular Algebra and Finite Machines. London: Chapman
and Hall.
Droste, M. & Kuich, W. 2013. Weighted definite automata over hemirings. Theoretical Computer Science 485: 38-48.
Feng,
F. 2011. Soft rough sets applied to multicriteria
group decision making. Ann. Fuzzy Math. Inform. 2: 69-80.
Feng,
F., Liu, X.Y., Leoreanu-Fotea, V. &
Jun, Y.B. 2011. Soft sets and soft rough sets. Inform. Sci.
181: 1125-1137.
Feng,
F., Jun, Y.B., Liu, X. & Li, L. 2010. An adjustable approach
to fuzzy soft set based decision making. J. Comput.
Appl. Math. 234: 10-20.
Feng,
F., Jun, Y.B. & Zhao, X. 2008. Soft semirings.
Comput. Math. Appl. 56: 2621-2628.
Golan,
J.S. 1999. Semirings and Their
Application. Dodrecht: Kluwer Academic
Publication.
Hebisch, U. & Weinert, H.J. 1998. Semirings:
Algebraic Theory and Applications in the Computer Science. Singapore:
World Scientific.
Henriksen, M. 1958. Ideals
in semirings with commutative addition.
Am. Math. Soc. Not. 6: 321.
Iizuka, K. 1959. On the
Jacobson radical of a semiring. Tohoku
Math. J. 11: 409-421.
Jun,
Y.B. 2008. Soft BCK/BCI-algebras. Comput.
Math. Applic. 56: 1408-1413.
Jun,
Y.B. & Ahn, S.S. 2012. Double-framed
soft sets with applications in BCK/BCI-algebras. J. Appl. Math.
p. 15.
Jun,
Y.B. & Park, C.H. 2008. Applications of soft sets in ideal theory.
Inform. Sci. 178: 2466-2475.
Jun,
Y.B., Muhiuddin, G. & Al-roqi,
A.M. 2013. Ideal theory of BCK/BCI-algebras based on double-framed
soft sets. Appl. Math. Inf. Sci. 7(5): 1879-1887.
Jun,
Y.B., Lee, K.J. & Khan, A. 2010. Soft ordered semigroups. Math.
Logic Q. 56: 42-50.
Jun,
Y.B., Lee, K.J. & Park, C.H. 2009. Soft set theory applied to
ideals in d-algebras. Comput.
Math. Applic. 57: 367-378.
Jun,
Y.B., Lee, K.J. & Zhan, J. 2009. Soft p-ideals of soft BCI-algebras.
Comput. Math. Applic.
58: 2060-2068.
Khan,
A., Izhar, M. & Sezgin,
A. 2017. Characterizations of Abel Grassmann's
groupoids by the properties of double-framed soft ideals.
International Journal of Analysis and Applications 15(1):
62-74.
Khan,
A., Izhar, M. & Khalaf,
M.M. 2017. Double-framed soft LA-semigroups. Journal of Intelligent
& Fuzzy Systems 33(6): 3339-3353.
Khan,
A., Jun, Y.B., Shah, S.I.A. & Ali, M. 2015. Characterizations
of hemirings in terms of cubic h-ideals. Soft Comput. 19:
2133-2147.
Kuich, W. & Salomma, A. 1986. Semirings,
Automata, Languages. Berlin: Springer.
Ma,
X. & Zhan, J. 2014. Characterizations of hemiregular
hemirings via
a kind of new soft union sets. Journal of Intelligent & Fuzzy
Systems 27: 2883-2895.
Ma,
X., Zhan, J. & Davvaz, B. 2016. Applications
of soft intersection sets to hemirings
via SI-h-bi-ideals and SI-h-quasi-ideals.
Filomat 30(8): 2295-2313.
Maji, P.K., Roy, A.R.
& Biswas, R. 2002. An application of soft sets in a decision
making problem. Comput. Math. Applic. 44: 1077-1083.
Maji, P.K., Biswas,
R. & Roy, A.R. 2003. Soft set theory. Comput.
Math. Applic. 45(4-5): 555-562.
Majumdar, P. & Samanta, S.K. 2008. Similarity measure of soft sets. New
Mathematics and Natural Computation 4(1): 1-12.
Molodtsov, D. 1999. Soft set theory-First results. Comput.
Math. Applic. 37(4-5): 19-31.
Molodtsov, D., Leonov, V.Y. & Kovkov, D.V.
2006. Soft set technique and its applications. Nechetkie
Sistemy i Myagkie Vychisleniya 1(1): 8-39.
Roy,
A.R. & Maji, P.K. 2007. A soft set
theoretic approach to decision making problems. Journal of Computational
and Applied Mathematics 203: 412-418.
Sezer, A.S. 2014. A
new approach to LA-semigroup theory via
the soft sets. J. Intell. &
Fuzzy Syst.
26: 2483-2495.
Sezgin, A. & Atagun, A.O. 2011. On operations of soft sets. Comput. Math. Appl. 61: 1457-1467.
Torre,
D.R.L. 1965. On h-ideals and k-ideals in hemirings.
Publ. Math. Debrecen. 12: 219-226.
Vandiver, H.S. 1934. Note
on a simple type of algebra in which cancellation law of addition
does not hold. Bull. Am. Math. Soc. 40: 914-920.
Xiao,
Z., Gong, K., Xia, S. & Zou, Y. 2010. Exclusive disjunctive
soft sets. Comput. Math. Appl. 59: 2128-2137.
Yin,
Y. & Li, H. 2008. The characterizations of
h-hemiregular
hemirings and h-intra
hemiregular hemirings. Information Sciences 178: 3451-3464.
Zhan,
J. & Maji, P.K. 2014. Applications
of soft union sets to h-semisimple and h-quasi-hemiregular hemirings. Hacettepe Journal of Mathematics and Statistics
43(5): 815-825.
Zhan,
J. & Jun, Y.B. 2010. Soft BL-algebras based on fuzzy sets. Comput. Math. Applic.
59: 2037-2046.
Zhan,
J. & Dudek, W.A. 2007. Fuzzy h-ideals
of hemirings. Inf. Sci. 177: 878-886.
Zou,
Y. & Xiao, Z. 2008. Data analysis approaches of soft sets under
incomplete information. Knowledge-Based Systems 21: 941-945.
*Corresponding
author; email:
faiz_zady@yahoo.com
|