Sains Malaysiana 48(12)(2019): 2817–2830

http://dx.doi.org/10.17576/jsm-2019-4812-23

 

A New Classification of Hemirings through Double-Framed Soft h-Ideals

(Pengelasan Baru Hemirings melalui h-Ideals Lembut-Dua Kerangka)

 

FAIZ MUHAMMAD KHAN1,4*,NIEYUFENGU1, HIDAYAT ULLAH KHAN2 & ASGHAR KHAN3

 

1Department of Applied Mathematics, School of Natural and Applied Sciences, Northwestern Polytechnical University Xi'an, Shaanxi, PR China

 

2Department of Mathematics, University of Malakand, Lower Dir Chakddara, KP, Pakistan

 

3Department of Mathematics, Abdul Wali Khan University Mardan, Mardan, KP, Pakistan

 

4Department of Mathematics and Statistics, University of Swat, KP, Pakistan

 

Received: 21 February 2019/Accepted: 23 December 2019

 

ABSTRACT

 

Due to lack of parameterization, various ordinary uncertainty theories like theory of fuzzy sets, and theory of probability cannot solve complicated problems of economics and engineering involving uncertainties. The aim of the present paper was to provide an appropriate mathematical tool for solving such type of complicated problems. For the said purpose, the notion of double-framed soft sets in hemirings is introduced. As h-ideals of hemirings play a central role in the structural theory, therefore, we developed a new type of subsystem of hemirings. Double-framed soft left (right) h-ideals, double-framed soft h-bi-ideals and double-framed soft h-quasi-ideals of hemiring R are determined. These concepts are elaborated through suitable examples. Furthermore, we are bridging ordinary h-ideals and double-framed soft h-ideals of hemirings through double-framed soft including sets and characteristic double-framed soft functions. It is also shown that every double-framed soft h-quasi-ideal is double-framed soft h-bi-ideal but the converse inclusion does not hold. A well-known class of hemrings i.e. h-hemiregular hemirings is characterized by the properties of these newly developed double-framed soft h-ideals of R.

Keywords: DFS h-bi-ideal; DFS h-hemiregularhemirin; DFS h-quasi-idealg; DFS sets; h-ideals

ABSTRAK

 

Disebabkan oleh kekurangan pemparameteran, pelbagai teori ketidakpastian biasa seperti teori set kabur dan teori kebarangkalian tidak boleh menyelesaikan masalah ekonomi dan kejuruteraan yang rumit yang melibatkan ketidakpastian. Tujuan penulisan kertas ini adalah untuk menyediakan satu alat matematik yang sesuai untuk menyelesaikan masalah rumit yang sedemikian. Untuk tujuan tersebut, satu tanggapan set lembut dual kerangka dalam hemirings diperkenalkan. Oleh kerana h-ideals hemiring memainkan peranan utama dalam teori struktur, maka kami telah membangunkan satu jenis subsistem hemiring baru. h-ideals lembut kiri (kanan) dual kerangka, h-dwi-ideal lembut dual kerangka dan h-separa-ideal lembut dual kerangka hemirings ditentukan. Konsep ini dihuraikan melalui contoh yang sesuai. Selain itu, kami menghubungkan h-ideals biasa dan h-ideals lembut dual kerangka hemirings melalui set lembut dual kerangka dan pencirian fungsi lembut dual kerangka. Kajian ini juga menunjukkan bahawa setiap h-quasi-ideal lembut dual bingkai adalah h-dwi-ideal lembut dual kerangka tetapi rangkuman akas tidak dapat bertahan. Satu kelas hemirings terkenal iaitu h-hemisekata hemirings dicirikan oleh sifat h-ideals dua bingkai lembut daripada R yang baru dibangunkan ini.

Kata kunci: Set DFS; DFS h-dwi-ideal; DFS h-hemisekata hemiring; h-ideal; DFS h-separa-ideal

REFERENCES

 

Acar, U., Koyuncu, F. & Tanay, B. 2010. Soft sets and soft rings. Comput. Math. Appl. 59: 3458-3463.

Aho, A.W. & Ullman, J.D. 1976. Introduction to Automata Theory. Languages and Computation. Reading: Addison Wesley.

Ali, M.I., Shabir, M. & Naz, M. 2011. Algebraic structure of soft sets associated with new operations. Comput. Math. Appl. 61: 2647-2654.

Ali, M.I., Feng, F., Min, W.K. & Shabir, M. 2009. On some new operations in soft set theory. Comput. Math. Applic. 57: 1547-1553.

Atagun, A.O. & Sezgin, A. 2011. Soft substructures of rings, fields and modules. Comput. Math. Appl. 61: 592-601.

Benson, D.G. 1989. Bialgebra: Some foundations for distributed and concurrent computation. Fundam. Inf. 12: 427-486.

Cagman, N. & Enginoglu, S. 2011. FP-soft set theory and its applications. Ann. Fuzzy Math. Inform. 2: 219-226.

Çagman, N. & Enginoglu, S. 2010a. Soft matrix theory and its decision making. Comput. Math. Appl. 59: 3308-3314.

Çagman, N. & Enginoglu, S. 2010b. Soft set theory and uni-int decision making. Eur. J. Oper. Res. 207: 848-855.

Conway, J.H. 1971. Regular Algebra and Finite Machines. London: Chapman and Hall.

Droste, M. & Kuich, W. 2013. Weighted definite automata over hemirings. Theoretical Computer Science 485: 38-48.

Feng, F. 2011. Soft rough sets applied to multicriteria group decision making. Ann. Fuzzy Math. Inform. 2: 69-80.

Feng, F., Liu, X.Y., Leoreanu-Fotea, V. & Jun, Y.B. 2011. Soft sets and soft rough sets. Inform. Sci. 181: 1125-1137.

Feng, F., Jun, Y.B., Liu, X. & Li, L. 2010. An adjustable approach to fuzzy soft set based decision making. J. Comput. Appl. Math. 234: 10-20.

Feng, F., Jun, Y.B. & Zhao, X. 2008. Soft semirings. Comput. Math. Appl. 56: 2621-2628.

Golan, J.S. 1999. Semirings and Their Application. Dodrecht: Kluwer Academic Publication.

Hebisch, U. & Weinert, H.J. 1998. Semirings: Algebraic Theory and Applications in the Computer Science. Singapore: World Scientific.

Henriksen, M. 1958. Ideals in semirings with commutative addition. Am. Math. Soc. Not. 6: 321.

Iizuka, K. 1959. On the Jacobson radical of a semiring. Tohoku Math. J. 11: 409-421.

Jun, Y.B. 2008. Soft BCK/BCI-algebras. Comput. Math. Applic. 56: 1408-1413.

Jun, Y.B. & Ahn, S.S. 2012. Double-framed soft sets with applications in BCK/BCI-algebras. J. Appl. Math. p. 15.

Jun, Y.B. & Park, C.H. 2008. Applications of soft sets in ideal theory. Inform. Sci. 178: 2466-2475.

Jun, Y.B., Muhiuddin, G. & Al-roqi, A.M. 2013. Ideal theory of BCK/BCI-algebras based on double-framed soft sets. Appl. Math. Inf. Sci. 7(5): 1879-1887.

Jun, Y.B., Lee, K.J. & Khan, A. 2010. Soft ordered semigroups. Math. Logic Q. 56: 42-50.

Jun, Y.B., Lee, K.J. & Park, C.H. 2009. Soft set theory applied to ideals in d-algebras. Comput. Math. Applic. 57: 367-378.

Jun, Y.B., Lee, K.J. & Zhan, J. 2009. Soft p-ideals of soft BCI-algebras. Comput. Math. Applic. 58: 2060-2068.

Khan, A., Izhar, M. & Sezgin, A. 2017. Characterizations of Abel Grassmann's groupoids by the properties of double-framed soft ideals. International Journal of Analysis and Applications 15(1): 62-74.

Khan, A., Izhar, M. & Khalaf, M.M. 2017. Double-framed soft LA-semigroups. Journal of Intelligent & Fuzzy Systems 33(6): 3339-3353.

Khan, A., Jun, Y.B., Shah, S.I.A. & Ali, M. 2015. Characterizations of hemirings in terms of cubic h-ideals. Soft Comput. 19: 2133-2147.

Kuich, W. & Salomma, A. 1986. Semirings, Automata, Languages. Berlin: Springer.

Ma, X. & Zhan, J. 2014. Characterizations of hemiregular hemirings via a kind of new soft union sets. Journal of Intelligent & Fuzzy Systems 27: 2883-2895.

Ma, X., Zhan, J. & Davvaz, B. 2016. Applications of soft intersection sets to hemirings via SI-h-bi-ideals and SI-h-quasi-ideals. Filomat 30(8): 2295-2313.

Maji, P.K., Roy, A.R. & Biswas, R. 2002. An application of soft sets in a decision making problem. Comput. Math. Applic. 44: 1077-1083.

Maji, P.K., Biswas, R. & Roy, A.R. 2003. Soft set theory. Comput. Math. Applic. 45(4-5): 555-562.

Majumdar, P. & Samanta, S.K. 2008. Similarity measure of soft sets. New Mathematics and Natural Computation 4(1): 1-12.

Molodtsov, D. 1999. Soft set theory-First results. Comput. Math. Applic. 37(4-5): 19-31.

Molodtsov, D., Leonov, V.Y. & Kovkov, D.V. 2006. Soft set technique and its applications. Nechetkie Sistemy i Myagkie Vychisleniya 1(1): 8-39.

Roy, A.R. & Maji, P.K. 2007. A soft set theoretic approach to decision making problems. Journal of Computational and Applied Mathematics 203: 412-418.

Sezer, A.S. 2014. A new approach to LA-semigroup theory via the soft sets. J. Intell. & Fuzzy Syst. 26: 2483-2495.

Sezgin, A. & Atagun, A.O. 2011. On operations of soft sets. Comput. Math. Appl. 61: 1457-1467.

Torre, D.R.L. 1965. On h-ideals and k-ideals in hemirings. Publ. Math. Debrecen. 12: 219-226.

Vandiver, H.S. 1934. Note on a simple type of algebra in which cancellation law of addition does not hold. Bull. Am. Math. Soc. 40: 914-920.

Xiao, Z., Gong, K., Xia, S. & Zou, Y. 2010. Exclusive disjunctive soft sets. Comput. Math. Appl. 59: 2128-2137.

Yin, Y. & Li, H. 2008. The characterizations of h-hemiregular hemirings and h-intra hemiregular hemirings. Information Sciences 178: 3451-3464.

Zhan, J. & Maji, P.K. 2014. Applications of soft union sets to h-semisimple and h-quasi-hemiregular hemirings. Hacettepe Journal of Mathematics and Statistics 43(5): 815-825.

Zhan, J. & Jun, Y.B. 2010. Soft BL-algebras based on fuzzy sets. Comput. Math. Applic. 59: 2037-2046.

Zhan, J. & Dudek, W.A. 2007. Fuzzy h-ideals of hemirings. Inf. Sci. 177: 878-886.

Zou, Y. & Xiao, Z. 2008. Data analysis approaches of soft sets under incomplete information. Knowledge-Based Systems 21: 941-945.

*Corresponding author; email: faiz_zady@yahoo.com

 

 

 

 

 

previous