Sains Malaysiana 47(11)(2018): 2841–2849
http://dx.doi.org/10.17576/jsm-2018-4711-27
Kajian terhadap Sifat Optik Titik
Kuantum Kadmium Sulfida pada Pelbagai Nilai pH dan Modifikasi
Permukaan dengan Asid Tioglikolik
(Study on Optical Properties of Cadmium
Sulphide Quantum Dots in Various pH Values and Surface Modification
by Thioglycolic Acid)
SITI AISYAH
SHAMSUDIN*
& JENNIVER JUNAS
School of Applied Physics, Faculty
of Science and Technology, Universiti Kebangsaan Malaysia, 43600
UKM Bangi, Selangor Darul Ehsan, Malaysia
Received: 30 April 2018/Accepted:
2 August 2018
ABSTRAK
Pengimejan tradisi mempunyai
banyak kekurangan seperti mempunyai jangka hayat yang pendek serta
bersaiz besar kerana sifat pendafluornya tidak tahan lama atau
berlakunya pelunturanfoto. Melalui kajian ini, nanohablur kadmium
sulfida dihasilkan dan berfungsi sebagai pengimejan titik kuantum
yang sesuai dengan sifat optiknya yang pelbagai mengikut saiz
zarahnya. Sifat optik titik kuantum kadmium sulfida (TK
CdS) boleh dipengaruhi oleh saiz dan juga komposisi
kimia TK
seperti perubahan pH. Dalam kajian ini, sifat optik
TK CdS
dikaji terhadap perubahan nilai pH dengan menghasilkan TK CdS
melalui kaedah koloidal. Kadmium asetat dihidrat (C4H6CdO4.2H2O)
dan natrium sulfida (Na2S) digunakan sebagai sebagai bahan pemula
bagi menghasilkan TK CdS. Nilai pH diubah suai dengan menitiskan
natrium hidroksida (NaOH) ke dalam larutan TK CdS.
Lima jenis larutan disediakan iaitu pada nilai pH5, pH7, pH8,
pH9 dan pH10. Masalah penggumpalan sering berlaku semasa proses
sintesis CdS. Oleh itu, kajian ini menggunakan asid tioglikolik
(HSCH2CO2H)
sebagai agen penstabil kepada TK CdS. Spektra keserapan UV
memberi anjakan biru apabila TK CdS pada pH alkali kerana saiz nanohablur
mengecil. Hasil daripada spektroskopi pendarfluor mendapati larutan
yang mempunyai nilai pH8 memberi puncak yang tertinggi. Hal ini
adalah kerana pada pH ini nanohablur mampu berubah pada posisi
yang tepat dan membentuk TK
CdS pada kehabluran yang tinggi. Oleh itu, mekanisme
ini dapat membentuk perangkap lubang dan seterusnya eksiton terbentuk.
Kata kunci: Asid tioglikolik;
nilai pH; sifat optik; titik kuantum kadmium sulfide
ABSTRACT
Traditional imaging has many
drawbacks such as a short lifetime and larger particles’ sizes
as the result the fluorescence property does not long lasting
due to the photo-bleaching phenomenon. Via this study, nanocrystal
cadmium sulphide has been synthesized and functioned as a quantum
dot imaging corresponding to optical properties that vary with
particle size. Optical properties of the quantum dots of cadmium
sulphide (CdS QDs) can be changed by particles’ size and also of the chemical
composition while synthesis such as pH values. In this study,
the optical properties of CdS QDs were studied against the change in
the pH values by preparing CdS QDs via the colloidal method.
Cadmium acetate dehydrated (C4H6CdO4.2H2O)
and sodium sulphide (Na2S) are used as the precursors for producing
CdS QDs. The pH values are modified by titrating sodium hydroxide
(NaOH) into CdS QDs’ aqueous solution. Five pH values
of aqueous solutions at pH5, pH7, pH8, pH9 and pH10 were prepared
however, agglomeration often occurs during the synthesising process.
Therefore, thioglycolic acid (HSCH2CO2H)
was used as a stabilizer agent for CdS QDs. UV-vis
Spectra have shown blue-shifted when CdS QDs on the alkaline medium due
to the nanocrystals’ sizes are decreased. The result from fluorescence
spectroscopy has given the CdS QDs in pH8 gives the highest peak
compared to others pH values. This happened because at this pH
value, the nanocrystalline is able to change to the right position
and formed the CdS QDs
with high crystallization. Thus, this mechanisms of the occurrence
of the trap hole obtained and caused the exciton.
Keywords: CdS quantum dot; optical properties; pH value; thioglycolic
acid
REFERENCES
Agostiano,
A., Catalano, M., Curri, M.L., Della Monica, M., Manna, L. &
Vasanelli, L. 2000. Synthesis and structural characterisation
of CdS nanoparticles prepared in a four-components ‘water-in-oil’
microemulsion. Micron 31(3): 253-258.
Brus,
L.E. 1984. Electron-electron and electron-hole interactions in
small semiconductor crystallites: The size dependence of the lowest
excited electronic state. The Journal of Chemical Physics 80(9):
4403-4409.
Cao,
Y.C. & Wang, J. 2004. One-pot synthesis of high-quality zinc-blende
CdS nanocrystals. J. Am. Chem. Soc. 126: 14336-14337.
Chen,
K. & Hou, S. 2007. Poly (vinyl amine) stabilized colloidal
CdS quantum dots of color-tunable photoluminescence: Syntheses
and optical properties 3. 2 effect of polymer conformation on
the size of CdS QDs. NSTI-Nanotech. 4: 389-392.
Durmusoglu,
E.G., Yildizhan, M.M., Gulgun, M.A. & Acar, H.Y. 2017. Production
of small, stable PbS/CdS quantum dots via room temperature cation
exchange followed by a low temperature annealing processes. The
Journal of Physics Chemistry C 121(45): 25520-25530.
Gupta,
P. & Ramrakhiani, M. 2009. Influence of the particle size
on the optical properties of CdSe nanoparticles. The Open Nanoscience
Journal 3: 15-19.
Hasanzadeh,
J., Farjami Shayesteh, S. & Abdolahzadeh Ziabari, A. 2014.
Effect of pH on the optical properties of doped CdS (Cu, Fe) nanoparticles
incorporated in TG as the capping agent. Acta Physica Polonica
A 126(3): 713-716.
Hassanien,
A.S., Aly, K.A. & Akl, A.A. 2016. Study of optical properties
of thermally evaporated ZnSe thin films annealed at different
pulsed laser powers. Journal of Alloys and Compounds 685:
733-742.
Hui,
L. 2008. Synthesis and characterization of aqueous quantum dots
for biomedical applications. PhD Thesis. Drexel University, Philadelphia
(Unpublished).
Kumar,
N., Purohit, L.P. & Goswami, Y.C. 2015. Spin coating of highly
luminescent cu doped CdS nanorods and their optical structural
characterizations. Chalcogenide Letters 12(6): 333-338.
Li,
H., Shih, W.Y. & Shih, W.H. 2007. Synthesis and characterization
of aqueous carboxyl-capped CdS quantum dots for bioapplications.
Industrial and Engineering Chemistry Research 46(7): 2013-2019.
Mathur,
V., Rathore, K.S. & Sharma, K. 2013. Evaluation of energy
band gap, thermal conductivity, phase transition temperature and
elastic response of PS/CdS semiconducting optical nanocomposite.
World Journal of Nano Science and Engineering 3: 93-99.
Nath,
S.S., Chakdar, D., Gope, G. & Avasthi, D.K. 2008. Characterization
of CdS and ZnS quantum dots prepared via a chemical method on
SBR latex. Journal of Nanotechnology Online 4: 1-6.
Patel,
A.A., Wu, F., Zhang, J.Z., Torres-Martinez, C.L., Mehra, R.K.,
Yang, Y. & Risbud, S.H.2000. Synthesis, optical spectroscopy
and ultrafast electron dynamics of PbS nanoparticles with different
surface capping. The Journal of Physical Chemistry B 104(49):
11598-11605.
Rathore,
K., Patidar, D., Janu, Y., Saxena, N.S., Sharma, K. & Sharma,
T.P. 2008. Structural and optical characterization of chemically
synthesized ZnS nanoparticles. Chalcogenide Letters 5(6):
105-110.
Rathore,
K.S., Patidar, D., Saxena, N.S. & Sharma, K. 2010. Cadmium
sulphide nanocrystallites: Synthesis, optical and electrical studies.
AIP Conference Proceedings 1249: 145.
Rezagholipour
Dizaji, H. & Parand, P. 2014. Tuning the luminescence of CdS
quantum dots by a simple method. Journal of Nanostructures
4(2): 193-197.
Salih,
W.B. 2010. The study of optical properties of thin films Cd1-x MgxS
prepared by chemical spry pyrolysis technique J. of University
of Anbar for Pure Science 4(2): 2-7.
Shamsudin,
S.A., Radiman, S., Ghamsari, M.S. & Khoo, K.S. 2009. Synthesis
CdS nanocrystals in various pH values. AIP Conference Proceedings
1136: 292-296.
Singh,
S., Garg, S., Chahal, J., Raheja, K., Singh, D. & Singla,
M.L. 2013. Luminescent behavior of cadmium sulfide quantum dots
for gallic acid estimation. Nanotechnology 24(115602):
1-8.
Tiwari,
S. & Tiwari, S. 2006. Electrical and optical properties of
CdS nanocrystalline semiconductors. Crystal Research and Technology
41(1): 78-82.
Unni,
C., Philip, D. & Gopchandran, K.G. 2008. Studies on optical
absorption and photoluminescence of thioglycerol-stabilized CdS
quantum dots. Spectrochimica Acta - Part A: Molecular and Biomolecular
Spectroscopy 71(4): 1402-1407.
Wang, Y., Lu, J., Tong,
Z., Li, B. & Zhou, L. 2011. Facile synthesis of CdS nanocrystals
using thioglycolic acid as a sulfur source and stabilizer in aqueous
solution. Bulletin of the Chemical Society of Ethiopia 25(3):
393-398.
Wang, Z., Xing, X., Yan, Y., Zhao,
R., Zou, T. & Wang, Z. 2018. One-step hydrothermal synthesis
of thioglycolic acid capped CdS quantum dots as fluorescence determination
of cobalt ion. Nature/Scientific Report 8(8953): 1-12.
Xu, S., Wang, C., Zhang, H., Wang,
Z., Yang, B. & Cui, Y. 2011. pH-sensitive photoluminescence
for aqueous thiol-capped CdTe nanocrystals. Nanotechnology
22(315703): 1-12.
Yao, J., Yang, M., Liu, Y. &
Duan, Y. 2015. Fluorescent CdS quantum dots: Synthesis, characterization,
mechanism and interaction. Journal of Nanoscience and Nanotechnology
15(5): 3720-3727.
Zhu, Y., Li, Z., Chen, M., Cooper,
H.M., Lu, G.Q.(M). & Xu, Z.P. 2013. One-pot preparation of
highly fluorescent cadmium telluride/cadmium sulfide quantum dots
under neutral-pH condition for biological applications. Journal
of Colloid and Interface Science 390(1): 3-10.
*Corresponding author;
email: aisyah@ukm.edu.my