Sains Malaysiana 46(9)(2017): 1651–1657
http://dx.doi.org/10.17576/jsm-2017-4609-38
Effect of Space Holders on Fabrication of Porous Titanium
Alloy-Hydroxyapatite Composite through Powder Injection Molding
(Kesan Pemegang Ruang terhadap Pembentukan Komposit Aloi
Titanium-Hidroksiapatit
Berbusa melalui Pengacuan Suntikan Serbuk)
FARRAHSHAIDA MOHD SALLEH1, ABU BAKAR SULONG1*, MUHAMMAD RAFI RAZA3,
NORHAMIDI MUHAMAD1 & LIM TSIU FHANG1
1Department of
Mechanical and Materials Engineering, Faculty of Engineering and Built
Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan
Malaysia
2Faculty of Mechanical
Engineering, Universiti Teknologi MARA, 40450 UiTM Shah Alam, Selangor Darul
Ehsan, Malaysia
3Department of
Mechanical Engineering, COMSATS Institute of Information Technology, Sahiwal, Pakistan
Received: 28 April
2016/Accepted: 31 May 2017
ABSTRACT
Powder injection
molding (PIM) is able to produce porous titanium
alloy/hydroxyapatite composite through the space holder technique. Thermal
debinding and sintering processes were the main challenges due to different
properties of metal and ceramic in producing such composite. This study focused
on the effect of different space holders on the physical and mechanical
properties of debound and sintered porous titanium aloi/hydroxyapatite
composite. The feedstock is containing of 80 wt. % of titanium
alloy/hydroxyapatite with 20 wt. % of space holders such as sodium chloride
(NaCl) and polymethylmethacrylate (PMMA), respectively. The
binders were then removed from the injected samples by two stages of debinding;
solvent and thermal debinding. The sintering was performed at three different temperatures
1100oC, 1200oC and 1300oC
at a heating rate of 10oC /min and holding time
of 5 h. It was found that the samples containing PMMA space
holder was fractured after sintering. While, the samples containing NaCl space
holder successfully formed pores and not fractured. At sintering temperature of
1300oC, the density, compressive strength and porosity volume
percentages for the sintered sample containing NaCl space holder were 3.05 g/cm3,
91.7 MPa. and 11.9 vol%, respectively.
Keywords:
Hydroxyapatite; metal foam; powder injection molding; space holder; titanium
alloy
ABSTRAK
Pengacuan suntikan
serbuk (PIM) boleh menghasilkan komposit aloi
titanium/hidroksiapatit berbusa dengan menggunakan teknik pemegang ruang.
Proses bagi penyahikatan dan persinteran merupakan cabaran utama disebabkan
sifat bahan logam dan seramik yang berbeza dalam penghasilan komposit tersebut.
Fokus kajian ini adalah kesan berbeza pemegang ruang terhadap sifat fizikal dan
mekanik penyahikatan serta persinteran komposit aloi titanium-hidroksiapatit
berbusa. Bahan suapan mengandungi 80 % bt. aloi titanium/hidroksiapatit dengan
20 % bt. pemegang ruang seperti sodium klorida (NaCl) dan polimetilmetakrilat (PMMA).
Bahan pengikat kemudian disingkirkan daripada sampel yang disuntik melalui dua
peringkat penyahikatan; larutan dan penyahikatan terma. Persinteran dijalankan
pada tiga suhu yang berbeza 1100oC, 1200oC
dan 1300oC pada kadar pemanasan sebanyak 10oC
/min dan masa pegangan selama 5 jam. Didapati sampel yang mengandungi pemegang
ruang PMMA hancur selepas persinteran. Manakala, sampel yang
mengandungi pemegang ruang NaCl berjaya menghasilkan liang-liang berbusa dan
tidak hancur. Pada suhu persinteran 1300oC,
ketumpatan, kekuatan mampatan dan peratusan isi padu keliangan sebanyak 3.05
g/cm3, 91.7 MPa. dan 11.9 vol%.
Kata kunci: Aloi
Titanium; hidroksiapatit; logam berbusa; pemegang ruang; pengacuan suntikan
serbuk
REFERENCES
Ahmad, S., Muhamad, N., Muchtar, A., Sahari, J., Jamaludin, K.R.,
Ibrahim, M.H.I., Mohamad Nor, N.H. & Murtadhahadi. 2010. Characterisation
of titanium foams sintered at different temperatures prepared by the slurry
method. Sains Malaysiana 39(1): 77-82.
Arawi, A.Z.O., Ramli, R. & Talari, M.K. 2012. Study of sintering
temperature for nano-hydroxyapatite with addition of titanium. Advanced
Materials Research 538-541: 2392-2395.
Arifin, A., Sulong, A.B., Muhamad, N., Syarif, J. & Ramli,
M.I. 2015. Powder injection molding of HA/Ti6Al4V composite using palm stearin
as based binder for implant material. Material and Design 65: 1028-1034.
Arifin, A. 2015. Pengacuanan suntikan serbuk hidroksiapatit/
Ti6Al4V komposit menggunakan pengikat berasaskan stearin sawit, PhD Tesis,
Universiti Kebangsaan Malaysia (Unpublished).
Best, S.M., Porter, A.E., Thian, E.S. & Huang, J. 2008.
Bioceramics: Past, present and the future. Journal of the European Ceramic
Society 28: 1319-1327.
Bram, M., Ahmad-Khanlou, A., Heckmann, A., Fuchs, B., Buchkremer,
H. & Stöver, D. 2002. Powder metallurgical fabrication processes for NiTi
shape memory alloy parts. Mater. Sci. Eng. A Struct. 337: 254-263.
Chu, C., Xue, X., Zhu, J. & Yin, Z. 2006. Fabrication and
characterization of titanium-matrix composite with 20 vol% hydroxyapatite for
use as heavy load-bearing hard tissue replacement. J. Mater. Sci-Mater. Med. 17: 245-251.
Deing, A., Luthringer, B., Laipple, D., Ebel, T. & Willumeit,
R. 2014. A porous TiAl6V4 implant material for medical application. International
Journal of Biomaterials 2014: Article ID. 904230.
Engin, G., Bülent, A. & Gülsoy, H.Ö. 2011. Injection molding
of micro-porous titanium alloy with space holder technique. Rare Metals 30(6):
565-571.
Enneti, R.K., Park, S.J., German, R.M. & Atre, S.V. 2012.
Review: Thermal debinding process in particulate materials processing. Materials
and Manufacturing Processes 27: 103-118.
German, R.M. 1996. Sintering
Theory and Practice. 1st ed. Canada: John Wiley & Son Inc.
Ibrahim, M.H.I.,
Muhamad, N. & Sulong, A.B. 2009. Rheological investigation of water
atomised stainless steel. International Journal of Mechanical and Materials
Engineering 4: 1-8.
Jha, N., Mondal, D.P.,
Dutta Majumdar, J., Badkul, A., Jha, A.K. & Khare, A.K. 2013. Highly porous
open cell Ti-foam using NaCl as temporary space holder through powder
metallurgy route. Materials and Design 47: 810-819.
Ji, C.H., Loh, N.H.,
Khor, K.A. & Tor, S.B. 2001. Sintering study of 316L stainless steel metal
injection molding parts using Taguchi method: Final density. Materials
Science and Engineering A 311: 74-82.
Jurcyzk, M. 2012. Bionanomaterials
for Dental Applications. New York: Taylor & Francis.
Köhl, M., Bram, M.,
Buchkremer, P., Stöver, D., Habijan, T. & Köller, M. 2008. In Proceedings
of the Fifth International Conference on Porous Metals and Metallic Foams, edited
by Lefeb-vre, P., Banhart, J. & Dunand, D.C. Destech Publications Inc. pp.
295-298.
Manonukul, A., Muenya,
N., Leaux, F. & Amaranan, S. 2010. Effects of replacing metal powder space
holder on metal foam produced by metal injection moulding. Journal of
Materials Processing Technology 210: 529-535.
Murray, N.G.D. &
Dunand, D.C. 2003. Microstructure evolution during solid-state foaming of
titanium. Composite Science Technology 63: 2311-2316.
Nishiyabu, K.,
Matsuzaki, S., Okubo, K., Ishida, M. & Tanaka, S. 2005. Porous graded
materials by stacked metal powder hot-press moulding. Materials Science
Forum 492-493: 765-770.
Nomura, N., Sakamoto,
K. & Takahashi, K. 2010. Fabrication and mechanical properties of porous
Ti/HA for bone fixation devices. Materials Transactions 51(8):
1449-1454.
Oh, I.H., Nomura, N.,
Masahashi, N. & Hanada, S. 2003. Mechanical properties of porous titanium
compacts prepared by powder sintering. Scripta Materialia 49: 1197-1202.
Omar, M.A. &
Davies, H.A. 2001. The influence of PMMA content on the properties of 316L
stainless steel MIM compact. J. of Materials Processing Technology 113:
471- 481.
Pachauri, P. &
Hamiuddin, M. 2016. Optimization of debinding process in metal injection
molding (MIM) for high density of sintered part. Int. J. Adv. Mater
Metallurgical Eng. 2(1): 12-22.
Patnaik, P. 2003. Handbook
of Inorganic Chemicals. New York: McGraw-Hill.
Pattanayak, D., Rao,
B.T. & Mohan, T.R.R. 2011. Calcium phosphate bioceramics and bioceramic
composites. J. Sol-Gel Sci. Technol. 59: 432-447.
Raza, M.R., Sulong,
A.B., Muhamad, N., Majid, N.A. & Rajabi, J. 2015. Effects of binder system
and processing parameters on formability of porous Ti-6Al-4V/HA composite
through powder injection moulding. Material & Design 87: 386-392.
Raza, M.R., Sulong,
A.B., Muhamad, N., Majid, N.A., Rajabi, J. & Amir, A. 2014. Optimization of
binder and process parameters to produce Ti/HA foam through micro powder
injection molding. Advanced Material Conference (AMC) 32: 307-312.
Thian, E.S., Loh,
N.H., Khor, K.A. & Tor, S.B. 2002. Ti-6Al-4V/ HA composite feedstock for
injection molding. Materials Letters 56: 522-532.
Thian, E.S., Loh,
N.H., Khor, K.A. & Tor, S.B. 2001. Effects of debinding parameters on
powder injection molded Ti- 6Al-4V/HA composite parts. Advances Powder
Technology 12(3): 361-370.
Torres, Y., Pavon,
J.J. & Rodriguez, J.A. 2012. Processing and characteristic of porous
titanium for implants by using NaCl as space holder. Journal of Material
Processing 212: 1061-1069.
Weil, K.S., Nyberg, E.
& Simmons, K. 2006. A new binder for powder injection molding and other
reactive metals. Journal of Material Processing Technology 176: 205-209.
Wen, C.E., Mabuchi,
M., Yamada, Y., Shimojima, K., Chino, Y. & Asahina, T. 2001. Processing of
biocompatible of Ti and Mg. Scr. Mater. 45(10): 1147-1153.
*Corresponding
author; email: abubakar@ukm.edu.my