Sains Malaysiana 46(7)(2017): 1033–1038
http://dx.doi.org/10.17576/jsm-2017-4607-04
Growth Conditions of
Graphene Grown in Chemical Vapour Deposition (CVD)
(Keadaan Tumbesaran
Grafin yang Dihasilkan dengan Pemendapan Wap Kimia)
MOHAMAD SHUKRI SIRAT1, EDHUAN ISMAIL1, HADI PURWANTO1, MOHD ASYADI
AZAM
MOHD
ABID2
& MOHD HANAFI ANI1*
1Department of
Manufacturing and Materials Engineering, International Islamic University
Malaysia (IIUM), Jalan Gombak, 53100 Kuala Lumpur, Federal Territory, Malaysia
2Faculty of
Manufacturing Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya
76100
Durian Tunggal, Melaka Bandaraya Bersejarah, Malaysia
Received: 31 October
2016/Accepted: 3 January 2017
ABSTRACT
The fabrication of high
quality graphene has become the main interest in current chemical
vapour deposition (CVD) method due to the scalability for mass production of
graphene-based electronic devices. The quality of graphene is
determined by defect density, number of layers and properties
changed such as electron mobility, transparency and conductivity
as compared to the pristine graphene. Here, we did a study on
the effects of reaction conditions such as methane, CH4
concentration and deposition time towards
the quality of graphene produced. We found that by lowering both
CH4 concentration
down to 20% and deposition time to 5 min, a better quality graphene
was produced with higher I2D/IG ratio
of 0.82 compared to other reaction condition. Through the analysis,
we concluded that there are two important parameters to be controlled
to obtain high quality graphene.
Keywords: Chemical vapour
deposition (CVD); graphene; optimization
ABSTRAK
Penghasilan grafin
yang berkualiti tinggi menjadi tumpuan utama dalam kaedah pemendapan wap kimia
(CVD)
pada masa kini kerana ia boleh diskalakan untuk pengeluaran peranti elektronik
berasaskan grafin secara besar-besaran. Kualiti grafin diukur daripada jumlah
kecacatan, jumlah lapisan dan perubahan sifat lain seperti pergerakan elektron,
ketelusan dan daya konduksi jika dibandingkan dengan grafin asli. Di sini, kami
telah menjalankan kajian perubahan keadaan tindak balas seperti kepekatan
metana, CH4 dan masa pemendapan terhadap kualiti grafin yang
dihasilkan. Kami telah mengenal pasti dengan menurunkan kedua-dua kepekatan CH4 sehingga
20% dan masa pemendapan sehingga 5 min akan menghasilkan kualiti grafin yang
lebih baik dengan nisbah I2D/IG sebanyak
0.82 lebih tinggi berbanding keadaan tindak balas lain. Menerusi analisis ini,
kami menyimpulkan bahawa terdapat dua parameter penting yang perlu dikawal
untuk menghasilkan grafin yang berkualiti tinggi.
Kata kunci: Grafin; pemendapan wap kimia (CVD);
pengoptimuman
REFERENCES
Ago, H., Ohta, Y., Hibino, H., Yoshimura, D., Takizawa, R.,
Uchida, Y., Tsuji, M., Okajima, T., Mitani, H. & Mizuno, S. 2015. Growth
dynamics of single-layer graphene on epitaxial Cu surfaces. Chemistry of
Materials 27(15): 5377-5385. doi:10.1021/acs.chemmater.5b01871.
Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G.,
Hone, J., Kim, P. & Stormer, H.L. 2008. Ultrahigh electron mobility in
suspended graphene. Solid State Communications 146(9-10): 351-355.
doi:10.1016/j.ssc.2008.02.024.
Borah, M., Singh, D.K., Subhedar, K.M. & Dhakate, S.R. 2015.
Role of substrate purity and its crystallographic orientation in the defect
density of chemical vapor deposition grown monolayer graphene. RSC Adv. 5(85):
69110-69118. doi:10.1039/C5RA13480C.
Chan, S-H., Chen, S-H., Lin, W-T., Li, M-C., Lin, Y-C. & Kuo,
C-C. 2013. Low-temperature synthesis of graphene on Cu using plasma-assisted
thermal chemical vapor deposition. Nanoscale Research Letters 8(1): 285.
doi:10.1186/1556- 276X-8-285.
Childres, I., Jauregui, L., Park, W., Cao, H. & Chen, Y.P.
2013. Raman spectroscopy of graphene and related materials. New Developments
in Photon and Materials Research, edited by Jang, J.I. New York: Nova
Science Publishers. doi:10.1016/ B978-0-444-53175-9.00016-7.
Costa, S.D., Righi, A., Fantini, C., Hao, Y., Magnuson, C.,
Colombo, L., Ruoff, R.S. & Pimenta, M.A. 2012. Resonant Raman spectroscopy
of graphene grown on copper substrates. Solid State Communications 152(15):
1317-1320. doi:10.1016/j.ssc.2012.05.001.
Dresselhaus, M.S., Jorio, A., Hofmann, M., Dresselhaus, G. &
Saito, R. 2010. Perspectives on carbon nanotubes and graphene Raman
spectroscopy. Nano Letters 10(3): 751-758. doi:10.1021/nl904286r.
Faggio, G., Capasso, A., Messina, G., Santangelo, S., Dikonimos,
Th., Gagliardi, S., Giorgi, R., Morandi, V., Ortolani, L. & Lisi, N. 2013.
High-temperature growth of graphene films on copper foils by ethanol chemical
vapor deposition. The Journal of Physical Chemistry C 117(41):
21569-21576. doi:10.1021/jp407013y.
Han, G.H., Güneş, F., Bae, J.J., Kim, E.S., Chae, S.J., Shin,
H.J., Choi, J.Y., Didier Pribat & Lee, Y.H. 2011. Influence of copper
morphology in forming nucleation seeds for graphene growth. Nano Letters 11(10):
4144-4148. doi:10.1021/ nl201980p.
Hu, B., Ago, H., Ito, Y., Kawahara, K., Tsuji, M., Magome, E.,
Sumitani, K., Mizuta, N., Ikeda, K.I. & Mizuno, S. 2012. Epitaxial growth
of large-area single-layer graphene over Cu(1 1 1)/sapphire by atmospheric
pressure CVD. Carbon 50(1): 57-65. doi:10.1016/j.carbon.2011.08.002.
Huang, P.Y., Ruiz-Vargas, C.S., van der Zande, A.M., Whitney,
W.S., Levendorf, M.P., Kevek, J.W., Garg, S., Alden, J.S., Hustedt, C.J., Zhu,
Y., Park, J., McEuen, P.L. & Muller, D.A. 2011. Grains and grain boundaries
in single-layer graphene atomic patchwork quilts. Nature 469(7330):
389-392. doi:10.1038/nature09718.
Ibrahim, A., Akhtar, S., Atieh, M., Karnik, R. & Laoui, T.
2015. Effects of annealing on copper substrate surface morphology and graphene
growth by chemical vapor deposition. Carbon 94: 369-377.
doi:10.1016/j.carbon.2015.06.067.
Ishihara, M., Koga, Y., Kim, J., Tsugawa, K. & Hasegawa, M.
2011. Direct evidence of advantage of Cu(111) for graphene synthesis by using
Raman mapping and electron backscatter diffraction. Materials Letters 65(19-20):
2864-2867. doi:10.1016/j.matlet.2011.06.047.
Jung,
D.H., Kang, C., Kim, M., Cheong, H., Lee, H. & Lee, J.S. 2014. Effects of
hydrogen partial pressure in the annealing process on graphene growth. The
Journal of Physical Chemistry C 118(7): 3574-3580. doi:10.1021/jp410961m.
Lee, C., Wei, X.,
Kysar, J.W. & Hone, J. 2008. Measurement of the elastic properties and
intrinsic strength of monolayer graphene. Science 321(5887): 385-388.
doi:10.1126/ science.1157996.
Li, X., Cai, W., An,
J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc,
E., Banerjee, S.K., Colombo, L. & Ruoff, R.S. 2009. Large-area synthesis of
high-quality and uniform graphene films on copper foils. Science 324(5932):
1312-1314. doi:10.1126/science.1171245.
Liu, W., Li, H., Xu,
C., Khatami, Y. & Banerjee, K. 2011. Synthesis of high-quality monolayer and
bilayer graphene on copper using chemical vapor deposition. Carbon 49(13):
4122-4130. doi:10.1016/j.carbon.2011.05.047.
Luo, Z., Lu, Y.,
Singer, D.W., Berck, M.E., Somers, L.A., Goldsmith, B.R. & Johnson, A.T.C.
2011. Effect of substrate roughness and feedstock concentration on growth of
wafer-scale graphene at atmospheric pressure. Chemistry of Materials 23(6):
1441-1447. doi:10.1021/cm1028854.
Malard, L.M., Pimenta,
M.A., Dresselhaus, G. & Dresselhaus, M.S. 2009. Raman spectroscopy in
graphene. Physics Reports 473(5-6): 51-87.
doi:10.1016/j.physrep.2009.02.003.
Nair, R.R., Blake, P.,
Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R.
& Geim, A.K. 2008. Fine structure constant defines visual transperency of
graphene. Science 320: 1308. doi:10.1126/science.1156965.
Ogawa, Y., Hu, B.,
Orofeo, C.M., Tsuji, M., Ikeda, K.I., Mizuno, S., Hibino, H. & Ago, H.
2012. Domain structure and boundary in single-layer graphene grown on Cu(111)
and Cu(100) films. Journal of Physical Chemistry Letters 3(2): 219-226.
doi:10.1021/jz2015555.
Song, H.S., Li, S.L.,
Miyazaki, H., Sato, S., Hayashi, K., Yamada, A., Yokoyama, N. & Tsukagoshi,
K. 2012. Origin of the relatively low transport mobility of graphene grown
through chemical vapor deposition. Sci. Rep. 2: 337. doi:10.1038/
srep00337.
Sree Harsha, K.S.
2006. Principles of Vapor Deposition of Thin Films. New York: Elsevier.
doi:10.1016/B978-008044699- 8/50012-7.
Wood, J.D., Schmucker,
S.W., Lyons, A.S., Pop, E. & Lyding, J.W. 2011. Effects of polycrystalline
Cu substrate on graphene growth by chemical vapor deposition. Nano Letters 11(11):
4547-4554. doi:10.1021/nl201566c.
Yang, H., Shen, C-M.,
Tian, Y., Wang, G-Q., Lin, S-X., Zhang, Y., Gu, C-Z., Li, J-J. & Gao, H-J.
2014. Influence of reaction parameters on synthesis of high-quality
single-layer graphene on Cu using chemical vapor deposition. Chinese Physics
B 23(9): 96803. doi:10.1088/1674-1056/23/9/096803.
Yazyev, O.V. &
Louie, S.G. 2010. Electronic transport in polycrystalline graphene. Nature
Materials 9(10): 806-809. doi:10.1038/nmat2830.
Yu, Q., Jauregui,
L.A., Wu, W., Colby, R., Tian, J., Su, Z., Cao, H., Liu, Z., Pandey, D., Wei,
D., Chung, T.F., Peng, P., Guisinger, N.P., Stach, E.A., Bao, J., Pei, S.S.
& Chen, Y.P. 2011. Control and characterization of individual grains and
grain boundaries in graphene grown by chemical vapour deposition. Nature
Materials 10(6): 443-449. doi:10.1038/nmat3010.
*Corresponding
author; email: mhanafi@iium.edu.my