Sains Malaysiana 46(11)(2017): 2205-2213
http://dx.doi.org/10.17576/jsm-2017-4611-22
On-line
Detection Method for Outliers of Dynamic Instability Measurement
Data in Geological Exploration Control Process
(Kaedah Pengesanan atas Talian untuk Persilan
Luar Pengukuran Data Ketidakstabilan Dinamik dalam Proses Penerokaan
Kawalan Geologi)
FANG LIU1, WEIXING SU1*,
JIANJUN ZHAO2 & XIAODAN LIANG1
1School of Computer Science &
Software Engineering, Tianjin Polytechnic University
Tianjin
300387, China
2Bei Jing General Research Institute
of Mining & Metallurgy, Beijing 100160, China
Received:
3 January 2017/Accepted: 14 May 2017
ABSTRACT
Considering the characteristics
of the vibration data detected by the unstable regulation process
in the grinding and grading control system and the shortcomings
of the traditional wavelet anomaly detection method, an online
anomaly detection method combining autoregressive and wavelet
analysis is proposed. By introducing the improved robust AR model, this method can overcome
the problem that the time and frequency of traditional anomaly
detection using wavelet analysis method cannot be well balanced
and ensure the rationality of normal detection of process data.
Considering the characteristics of parameter change and dynamic
characteristics in the process of grinding and grading, the
proposed method has the ability of on-line detection and parameter
updating in real time, which ensures the control parameters
of time-varying process control system. In order to avoid the
problem that the traditional anomaly detection method needs
to set the detection threshold, introduce the HMM to analyse the wavelet coefficients
and update the HMM parameters online, which can
ensure that the HMM can well reflect the distribution
of the abnormal value of the process data. Through the experiment
and application, it is proven that the anomaly data detection
method proposed in this paper is more suitable for the detection
data in the process of unstable regulation.
Keywords: Auto-regression;
HMM; outlier detection; time series; wavelet
ABSTRAK
Dengan mengambil kira ciri
data getaran yang dikesan melalui proses pengaturan yang tidak
stabil dalam sistem kawalan pengisaran dan penggredan serta
kelemahan kaedah pengesanan anomali tradisi gelombang kecil,
kaedah pengesanan anomali atas talian yang menggabungkan autoregresi
dan analisis gelombang kecil adalah dicadangkan. Dengan memperkenalkan
model AR mantap diperbaik, kaedah ini
boleh mengatasi masalah tidak boleh seimbangkan masa dan kekerapan
anomali tradisi menggunakan kaedah analisis gelombang kecil
dan memastikan rasionaliti pengesanan biasa dalam pemprosesan
data. Dengan mengambil kira ciri perubahan parameter dan ciri
dinamik dalam proses mengisar dan penggredan, kaedah yang dicadangkan
mempunyai keupayaan pengesanan atas talian dan pengemaskinian
parameter masa nyata dan memastikan parameter kawalan untuk
sistem kawalan proses perubahan masa. Bagi mengelakkan masalah
yang dihadapi oleh kaedah pengesanan anomali tradisi adalah
perlu menetapkan tahap pengesanan dengan memperkenalkan HMM
untuk menganalisis pekali gelombang kecil dan
mengemaskini parameter HMM secara
atas talian yang boleh memastikan bahawa HMM dapat menunjukkan pengagihan
nilai data proses yang tidak normal dalam pemprosesan data.
Melalui uji kaji dan aplikasinya, dibuktikan bahawa kaedah pengesanan
anomali data yang dicadangkan dalam kertas ini adalah lebih
sesuai untuk pengesanan data dalam proses peraturan yang tidak
stabil.
Kata kunci: Auto-regresi;
gelombang kecil; HMM; pengesanan pensilan luar; siri masa
REFERENCES
Alex, A., Haralambos, S. & George,
B. 2003. Anew algorithm for online structure and parameter adaptation
of RBF networks. Neural Networks 16: 1003-1017.
Bharti, S. & Pattanaik, K.K.
2016. Gravitational outlier detection for wireless sensor networks.
International Journal of Communication 29(13): 2015-2027.
Barnet, V. & Lewis, T. 1994.
Outlier in Statistical Data. Chichester: John Wiley &
Sons.
Dai, W., Chai, T.Y. & Yang,
S.X. 2015. Data-driven optimization control for safety operation
of hematite grinding process. IEEE Transactions on Industrial
Electronics 62(5): 2930-2941.
Durocher, M., Lee, T.S., Ouarda,
T.B.M.J. & Chebana, F. 2016. Hybrid signal detection approach
for hydro-meteorological variables combining EMD and cross-wavelet
analysis. International Journal of Climatology 36(4):
1600-1613.
Griffiths, K.R., Hicks, B.J. &
Keogh, P.S. 2016. Wavelet analysis to decompose a vibration
simulation signal to improve pre-distribution testing of packaging.
Mechanical Systems and Signal Processing 76-77: 780-795.
Grubbs, F.E. 1969. Procedures for
detecting outlying observations in samples. Technometrics
11(1): 1-21.
Han, J.W. & Micheline, K. 2001.
2nd ed. Data Mining Concepts and Techniques. Massachusetts:
Morgan Kaufmann Publishers. pp. 254-257.
Jeff, A.B. 2006. What HMMs Can Do?
IEICE-- Transactions on Information and Systems E89-D(3):
869-891.
Knorr, E.M. & Ng, R.T. 1999.
Finding intensional knowledge of distance-based outliers. Proceedings
of the Twenty-Fifth International Conference on Very Large Data
Bases. pp. 211-222.
Knorr, E.M. & Ng, R.T. 1998.
Algorithms for mining distance-based outliers. Proceedings
of the Twenty- Fourth International Conference on Very Large
Data Bases. pp. 392-403.
le Roux, J.D. & Craig, I.K.
2013. Reducing the number of size classes in a cumulative rates
model used for process control of a grinding mill circuit. Powder
Technology 246: 169-181.
le Roux, J.D., Craig, I.K. &
Hulbert, D.G. 2013. Analysis and validation of a run-of-mine
ore grinding mill circuit model for process control. Minerals
Engineering 43- 44: 121-134.
Lindang, H.U., Tarmudi, Z.H. &
Jawan, A. 2017. Assessing water quality index in river basin:
Fuzzy inference system approach. Malaysian Journal of Geoscience
1(1): 27-31.
Lou, H.L. 1995. Implementing the
viterbi algorithm-fundamentals and real-rime issues for processor
designers. IEEE Signal processing Magazing. pp. 42- 52.
Lu,
S. W. 2016. Acceleration of kinetic Monte Carlo simulation of
particle breakage process during grinding with controlled accuracy.
Powder Technology 301: 186-196.
Mallat, S. & Hwang, W.L. 1992.
Singularity detection and processing with wavelets. IEEE
Transactions on Information Theory 38(2): 617-642.
Othman, R., Isa, N. & Othman,
A. 2015. Precipitated calcium carbonate from industrial waste
for paper making. Sains Malaysiana 44(11): 1561-1565.
Pittner, S. & Kamarthi, S.V.
1999. Feature extraction from wavelet coefficients for pattern
recognition tasks. IEEE Transactions on Pattern Analysis
and Machine Intelligence 21(1): 83-88.
Rabiner, L.R. 1989. A tutorial on
hidden Markov models and selected applications in speech recognition.
Proceedings of the IEEE 77(2): 257-286.
Rahman, Z.U., Khan, Z.M., Khattak,
Z., Abbas, M.A. & Ishfaque, M. 2017. Microfacies analysis
and reservoir potential of Sakesar Limestone, Nammal Gorge (Western
Salt Range), Upper Indus Basin, Pakistan. Pakistan Journal
of Geology 1(1): 12-17.
Ramaswamy, S., Rastogi, R. &
Sim, K.S. 2000. Efficient algorithms for mining outliers from
large data sets. Proceeding of the ACM SIGMOD International
Conference on Management of Data Dallas, Teas: ACM Press.
pp. 427-438.
Seo, H.S. 2016. A sequential outlier
detecting method using a clustering algorithm. The Korean
Journal of Applied Statistics 29(4): 699-706.
Su, W.X., Zhu, Y.L. & Liu, F.
2013. An online outlier detection method based on wavelet technique
and robust RBF network. Transactions of the Institute of
Measurement and Control 35(8): 1046-1057.
Takeuchi, J.I. & Yamanishi,
K. 2006. A unifying framework for detecting out19liers and change
points from time series. IEEE Transactions on Knowledge and
Data Engineering 18(4).
Xu, C.Y. & Shin, Y.C. 2007.
Control of cutting force for creep-feed grinding processes using
a multi-level fuzzy controller. Journal of Dynamic Systems
Measurement and Control-Transactions of the ASME 129(4):
480-492.
Zhang, C.L., Huang, Y.Z., Ma, X.X.,
Lu, W.Z. & Wang, G.X. 1998. A new approach to detect transformer
inrush current by applying wavelet transform. In Proc. Powercon
’98 2: 1040-1044.
Zhang, Q., Wang, C.X. & Zhao,
J. 2012. Outlier detecting algorithm based on clustering and
local information. Journal of Jilin University (Science Edition)
50(6): 1214-1217.
Zhou, P., Chai, T.Y. & Wang,
H. 2009. Intelligent optimal-setting control for grinding circuits
of mineral processing process. IEEE Transactions on Automation
Science and Engineering 6(4): 730-743.
*Corresponding author;
email: 15900201597@126.com