Sains Malaysiana 46(10)(2017): 1701–1708
http://dx.doi.org/10.17576/jsm-2017-4610-05
Arbuscular
Mycorrhizal Fungal Composition Affects the Growth and Nutrient
Acquisition of Two Plants from a Karst Area
(Kesan Komposisi Kulat Mikoriza Arbuskul terhadap Pertumbuhan dan Pemerolehan Nutrien oleh Dua Tumbuhan
dari Kawasan
Karst)
YUEJUN HE1*,
CHANGHONG
JIANG1,
HAO
YANG1,
YONGJIAN
WANG2
& ZHANGCHENG ZHONG3
1College of Forestry/Institute
for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang
550025, China
2College of Horticulture
& Forestry Sciences, Huazhong Agricultural
University, Wuhan 430070, China
3Life Science College,
Southwest University, Chongqing 400715, China
Received: 5 August
2016/Accepted: 23 February 2017
ABSTRACT
How the composition of the
arbuscular mycorrhizal (AM) fungal community affects plant traits
of different plant species in karst environments is poorly understood.
Broussonetia papyrifera
(a woody shrub) and Bidens pilosa
(a herbaceous plant) growing in pots in limestone soil were
inoculated with an AM fungus, either Funneliformis
mosseae (FM), Diversispora versiformis (DV) or Glomus diaphanum
(GD) or with an inoculum mixture of all three
AM fungi (bn).
B. papyrifera and B. pilosa
seedlings inoculated with AM fungi showed a significant
increase in biomass and nitrogen and phosphorus acquisition compared
with the controls, which lacked mycorrhiza. Mixed fungal inoculations
significantly enhanced biomass and nitrogen and phosphorus acquisition
by B. papyrifera seedlings compared with single fungal inoculations.
Nitrogen and phosphorus acquisition by B. papyrifera
mycorrhizal seedlings was significantly greater than that of
B. pilosa mycorrhizal seedlings. Fungal composition significantly
influenced the mycorrhizal benefits of biomass and phosphorus
acquisition and mixed fungal inoculations enhanced nitrogen acquisition.
Plant species significantly affected nitrogen acquisition but
did not have an effect on biomass and phosphorus benefits. We
concluded that AM fungal
associations increased plant growth and nutrient absorption and
that in general a mixed inoculation of AM fungi enhanced biomass and nutrient
acquisition more than a single AM fungal inoculation. In addition,
a mycorrhizal association was more beneficial for B. papyrifera seedlings in terms of biomass and nutrient acquisition
than for B. pilosa seedlings.
Keywords: Arbuscular mycorrhizae;
fungal composition; karst environments; nutrient acquisition
ABSTRAK
Pengaruh komposisi komuniti kulat mikoriza arbuskul (AM) terhadap
sifat tumbuhan
daripada spesies tumbuhan berbeza dalam persekitaran kars masih
kurang difahami.
Broussonetia papyrifera
(pokok renek
berkayu) dan Bidens pilosa (herba) yang tumbuh di dalam pasu dalam
tanah batu
kapur telah diinokulat
dengan kulat
AM
seperti Funneliformis mosseae (FM), Diversispora versiformis (DV) atau
Glomus diaphanum (GD) atau campuran inokulum ketiga-tiga kulat AM (MI).
Benih B. papyrifera dan B. pilosa
yang diinokulat dengan
kulat AM menunjukkan
kenaikan ketara
dalam pemerolehan biojisim, nitrogen dan fosforus berbanding dengan sampel kawalan
yang kurang mikoriza.
Inokulasi
kulat campuran telah menyebabkan peningkatan pemerolehan biojisim, nitrogen dan fosforus yang ketara oleh benih B. papyrifera berbanding inokulasi kulat tunggal. Pemerolehan nitrogen
dan fosforus
oleh benih mikoriza
B. papyrifera
jauh lebih ketara
daripada benih
mikoriza B. pilosa. Komposisi kulat memberi
kesan ketara terhadap
pemerolehan biojisim
dan fosforus mikoriza
manakala inokulasi
fungus campuran telah meningkatkan pemerolehan nitrogen.
Spesies tumbuhan memberi
kesan ketara
terhadap pemerolehan nitrogen tetapi tidak mempunyai
kesan ke atas pemerolehan biojisim dan fosforus.
Kesimpulannya, hubungan
kulat AM telah meningkatkan pertumbuhan tumbuhan dan penyerapan
nutrien dan
secara amnya ialah
inokulasi campuran
kulat AM telah meningkatkan pemerolehan biojisim dan nutrien
lebih daripada
inokulasi kulat AM tunggal. Di samping
itu, hubungan
mikoriza lebih bermanfaat untuk benih B. papyrifera daripada segi pemerolehan biojisim dan nutrien
daripada benih
B. Pilosa.
Kata kunci: Komposisi
kulat; mikoriza
arbuskul; pemerolehan nutrien; persekitaran kars
REFERENCES
Bao, S.D. 2000. Soil and agricultural chemistry analysis.
Agric. Press of China. Beijing (in Chinese).
Bavaresco, L.,
Cantù, E. & Trevisan,
M. 2000. Chlorosis occurrence, natural arbuscular-mycorrhizal infection and
stilbene root concentration of ungrafted
grapevine rootstocks growing on calcareous soil. Journal Plant
of Nutrition 23: 1685-1697.
Bever, J.D., Dickie, I.A., Facelli, E., Facelli, J.M., Klironomos, J., Moora, M., Rillig, M.C., Stock,
W.D., Tibbett, M. & Zobel, M. 2010.
Rooting theories of plant community ecology in microbial interactions.
Trends in Ecology & Evolution 25: 468-478.
Brachmann, A.
& Parniske, M. 2006. The most widespread symbiosis on earth. PLoS
Biology 4: e239.
Brundrett, M.C. 2009. Mycorrhizal associations and
other means of nutrition of vascular plants: Understanding the
global diversity of host plants by resolving conflicting information
and developing reliable means of diagnosis. Plant and Soil
320: 37-77.
Brundrett, M.C.,
Piché, Y. & Peterson, R.L. 1984. A new method for observing the morphology of vesicular-arbuscular
mycorrhizae. Canadian Journal of Botany 62: 2128-2134.
Çakan, H.
& Karataş, Ç. 2006. Interactions between mycorrhizal colonization and plant life forms
along the successional gradient of coastal sand dunes in the eastern
Mediterranean, Turkey. Ecological Research 21: 301-310.
Davison, J., Opik, M., Daniell, T.J., Moora, M. & Zobel, M. 2011. Arbuscular mycorrhizal fungal
communities in plant roots are not random assemblages. FEMS
Microbioogyl Ecology 78: 103-115.
Diaz, S. & Cabido, M. 1997. Plant
functional types and ecosystem function in relation to global
change. Journal of Vegetative Science 8(4): 463-474.
Edathil, T.T.,
Manian, S. & Udaiyan,
K. 1996. Interaction of multiple VAM fungal species on
root colonization, plant growth and nutrient status of tomato
seedlings (Lycopersicon esculentum
Mill.). Agriculture Ecosystem & Environment
59: 63-68.
Giovannetti, M.
& Mosse, B. 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal
infection in roots. New Phytologist
84: 489-500.
Grime, J., Mackey, J., Hillier, S. & Read, D. 1987. Floristic diversity in a model system using experimental microcosms.
Nature 328: 420-422.
Gustafson, D.J. & Casper, B.B. 2006. Differential
host plant performance as a function of soil arbuscular mycorrhizal
fungal communities: Experimentally manipulating co-occurring Glomus
species. Plant Ecology 183: 257-263.
Hart, M.M., Forsythe, J., Oshowski, B.,
Bücking, H., Jansa, J. & Kiers,
E.T. 2013. Hiding in a crowd-does diversity facilitate
persistence of a low-quality fungal partner in the mycorrhizal
symbiosis? Symbiosis 59: 47-56.
Jansa, J.,
Smith, F.A. & Smith, S.E. 2008. Are there benefits
of simultaneous root colonization by different arbuscular mycorrhizal
fungi? New Phytologist 177: 779-789.
Johnson,
N.C. 1993. Can fertilization of soil select less mutualistic mycorrhizae?
Ecological Applications 3: 749-757.
Kiers,
E.T., Duhamel, M., Beesetty, Y., Mensah,
J.A., Franken, O., Verbruggen, E., Fellbaum,
C.R., Kowalchuk, G.A., Hart, M.M.
& Bago, A. 2011. Reciprocal
rewards stabilize cooperation in the mycorrhizal symbiosis. Science
333: 880-882.
Koide, R.T. 2000. Functional
complementarity in the arbuscular mycorrhizal symbiosis.
New Phytologist 147: 233-235.
Koide, R.T. & Mosse, B. 2004. A history of research on arbuscular mycorrhiza. Mycorrhiza
14: 145-163.
Kormanik, P.P.,
Bryan, W.C. & Schultz, R.C. 1980. Procedures
and equipment for staining large numbers of plant root samples
for endomycorrhizal assay. Canadian Journal of Microbiology
26: 536-538.
Krak, K., Janoušková, M., Caklová, P., Vosátka, M. & Štorchová, H.
2012. Intraradical dynamics of two coexisting
isolates of the arbuscular mycorrhizal fungus Glomus intraradices
sensu lato
as estimated by real-time PCR of mitochondrial DNA. Applied
and Environmental Microbiology 78: 3630-3637.
Lavorel, S.,
McIntyre, S., Landsberg, J. & Forbes,
D. 1997. Plant functional classifications: From general
groups to specific groups based on response to disturbance.
Trends in Ecology and Evolution 12: 474-478.
Lekberg, Y., Gibbons, S.M., Rosendahl,
S. & Ramsey, P.W. 2013. Severe plant invasions can
increase mycorrhizal fungal abundance and diversity. ISME Journal
7: 1424-1433.
Likar,
M., Hancevic, K., Radic,
T. & Regvar, M. 2013. Distribution
and diversity of arbuscular mycorrhizal fungi in grapevines from
production vineyards along the eastern Adriatic coast.
Mycorrhiza 23: 209-219.
Liu, C., Liu, Y.,
Guo, K., Wang, S. & Yang, Y. 2014.
Concentrations and resorption patterns of 13
nutrients in different plant functional types in the karst region
of south-western China. Annals of Botany 113: 873-885.
Lopez-Garcia,
A., Palenzuela, J., Miguel Barea,
J. & Azcon- Aguilar, C. 2014. Life-history strategies
of arbuscular mycorrhizal fungi determine succession into roots
of Rosmarinus officinalis L., a characteristic woody perennial
plant species from Mediterranean ecosystems. Plant and Soil
379: 247-260.
Martinez-Garcia,
L.B. & Pugnaire, F.I. 2011. Arbuscular mycorrhizal
fungi host preference and site effects in two plant species in
a semiarid environment. Applied Soil Ecology
48: 313-317.
Nelson,
D. & Sommers, L.E. 1982. Total carbon, organic
carbon, and organic matter. Methods of Soil Analysis
Part 2 Chemical and Microbiological Properties. Location:
Publisher. pp. 539-579.
Perez,
M. & Urcelay, C. 2009. Differential growth response to arbuscular mycorrhizal fungi and plant
density in two wild plants belonging to contrasting functional
types. Mycorrhiza 19: 517-523.
Powell,
J.R., Anderson, I.C. & Rillig, M.C.
2013. A new tool of
the trade: Plant-trait based approaches in microbial ecology.
Plant and Soil 365: 35-40.
Sanchez-Castro,
I., Ferrol, N. & Barea, J.M. 2012. Analyzing the community composition of arbuscular mycorrhizal fungi
colonizing the roots of representative shrubland
species in a Mediterranean ecosystem. Journal of Arid
Environments 80: 1-9.
Sanders,
I.R. 2003.
Preference, specificity and cheating in the
arbuscular mycorrhizal symbiosis. Trends in Plant Science
8: 143-145.
Scheublin,
T.R., Ridgway, K.P., Young, J.P.W. & van der Heijden,
M.G.A. 2004.
Nonlegumes, legumes, and root nodules
harbor different arbuscular mycorrhizal fungal communities. Applied
and Environmental Microbiology 70: 6240-6246.
Smith,
S.E. & Read, D.J. 2010. Mycorrhizal Symbiosis.
New York: Academic Press.
Thonar,
C., Schnepf, A., Frossard,
E., Roose, T. & Jansa,
J. 2011.
Traits related to differences in function among three arbuscular
mycorrhizal fungi. Plant and Soil 339: 231-245.
Urcelay, C. & Diaz,
S. 2003. The mycorrhizal dependence of subordinates determines
the effect of arbuscular mycorrhizal fungi on plant diversity.
Ecology Letters 6: 388-391.
Urcelay,
C., Díaz, S., Gurvich,
D.E., Chapin Iii, F.S., Cuevas, E. & Domínguez,
L.S. 2009.
Mycorrhizal community resilience in response
to experimental plant functional type removals in a woody ecosystem.
Journal of Ecology 97: 1291-1301.
Van
Tuinen, D., Jacquot,
E., Zhao, B., Gollotte, A. & Gianinazzi-
Pearson, V. 1998.
Characterization of root colonization profiles by a microcosm
community of arbuscular mycorrhizal fungi using 25S rDNA-targeted
nested PCR. Molecular Ecology 7: 879-887.
Vandenkoornhuyse,
P., Ridgway, K.P., Watson, I.J., Fitter, A.H. & Young, J.P.W.
2003. Co-existing grass
species have distinctive arbuscular mycorrhizal communities. Molecular
Ecology 12: 3085-3095.
Vogelsang, K.M., Reynolds,
H.L. & Bever, J.D. 2006 Mycorrhizal
fungal identity and richness determine the diversity and productivity
of a tallgrass prairie system. New Phytologist
172: 554-562.
Wagg,
C., Jansa, J., Schmid,
B. & van der Heijden, M.G. 2011. Belowground biodiversity
effects of plant symbionts support aboveground productivity. Ecology
Letters 14: 1001-1009.
Wang,
S.J., Liu, Q.M. & Zhang, D.F. 2004. Karst rocky desertification in
southwestern China: Geomorphology, landuse,
impact and rehabilitation. Land Degradation & Development
15: 115-121.
Wei, Y. 2012. Molecular diversity and distribution of arbuscular mycorrhizal fungi
in karst ecosystem, Southwest China. African Journal
Biotechnology 11: 14561-14568.
Yang,
C., Hamel, C., Schellenberg, M.P., Perez,
J.C. & Berbara, R.L. 2010. Diversity and
functionality of arbuscular mycorrhizal fungi in three plant communities
in semiarid Grasslands National Park, Canada. Microbial
Ecology 59: 724-733.
Yang,
H., Zang, Y., Yuan, Y., Tang, J. &
Chen, X. 2012. Selectivity by
host plants affects the distribution of arbuscular mycorrhizal
fungi: Evidence from ITS rDNA sequence metadata. BMC Evolutionary
Biology 12: 50.
Zhang,
Z., Zhang, J. & Huang, Y. 2014. Effects of arbuscular
mycorrhizal fungi on the drought tolerance of Cyclobalanopsis
glauca seedlings under greenhouse
conditions. New Forest 45: 545-556.
Zhu,
H., He, X., Wang, K., Su, Y. & Wu, J. 2012. Interactions of
vegetation succession, soil bio-chemical properties and microbial
communities in a Karst ecosystem. European Journal of Soil
Biology 51: 1-7.
*Corresponding author; email: hyj1358@163.com