Sains Malaysiana 45(8)(2016): 1235–1242
Effect
of HNTs Addition in the Injection Moulded Thermoplastic Polyurethane Matrix on
the Mechanical and Thermal Properties
(Kesan Penambahan
HNTs dalam Pengacuan Suntikan Matriks
Termoplastik Poliuretana ke atas Sifat Mekanik dan Terma)
TAYSER SUMER GAAZ1,2*, ABU BAKAR SULONG1 & ABDUL AMIR H. KADHUM2
1Department of
Mechanical & Materials Engineering, Faculty of Engineering & Built
Environment
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul
Ehsan, Malaysia
2Department
of Chemical & Process Engineering, Faculty of Engineering & Built
Environment
Universiti
Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
3Department
of Equipment’s & Machines Engineering, Technical College Al-Musaib
Al-Furat
Al-Awsat Technical University, Iraq
Received:
20 April 2015/Accepted: 20 November 2015
ABSTRACT
The additions of nanofillers are able to enhance the mechanical
properties of neat polymer matrix. There were few researchers reported on the
mechanical properties of halloysite nanotubes reinforced thermoplastic
polyurethane (HNTs-TPU) nanocomposites formed through
casting and compression moulding. However, fewer researchers also reported
study on HNTs-TPU formed through injection molding.
The main objective of this paper was to study the effect of HNTs
addition of TPU matrix on mechanical and physical properties. HNTs
were mixed in TPU matrix using a brabender mixer with concentration
ranging from 0.5 to 7 wt. % HNT loading (at specific mixing
speed, mixing time and mixing temperature). Injection moulding was carried out
to form tensile bar shaped specimens with specific moulding parameters
(injection temperature, injection time and injection pressure). Increment
around 35% of tensile strength of the specimen was found at 1 wt. % HNT loading
concentration which exhibited the value of 24.3 MPa, compared to neat TPU;
the best mixing. The Young’s modulus was increased with increasing HNTs
loading. The elongation decreased with increasing HNTs
loading. The FESEM results showed that HNTs
were dispersed in TPU matrix. The TGA results
showed that the addition of 1 wt. % HNTs enhanced the thermal
properties. It can be concluded that HNTs-TPU has
improved tensile and physical properties compared with neat TPU due
to the addition of nanofiller.
Keywords: Halloysite nanotubes; mechanical properties;
nanocomposites; physical properties; thermoplastic polyurethane
ABSTRAK
Penambahan nano pengisi dapat meningkatkan sifat
mekanik matriks polimer tulen. Terdapat beberapa penyelidik telah melaporkan
mengenai sifat mekanik tiub nano haloisit diperkuat nanokomposit termoplastik
poliuretana (HNTs-TPU) yang dibentuk melalui pengacuan
tuangan dan mampatan. Walau bagaimanapun, hanya
sedikit penyelidik yang mengkaji tentang HNTs-TPU yang
dibentuk melalui pengacuan suntikan. Objektif utama
penyelidikan ini ialah mengkaji kesan penambahan HNTs
matriks TPU ke atas sifat mekanik dan fizikal. HNTs
telah dicampurkan dalam matriks TPU menggunakan pembancuh
brabender dengan kepekatan antara 0.5 hingga 7 % bt. Pembebanan HNT (pada kelajuan, masa dan suhu pencampuran yang telah
ditetapkan). Pengacuan suntikan telah dijalankan untuk
membentuk spesimen berbentuk bar tegangan dengan parameter pengacuan tertentu
(suhu, masa dan suntikan pengacuan). Pertambahan nilai kekuatan tegangan
spesimen sebanyak 35% diperoleh pada 1 % bt. kepekatan pembebanan HNT dengan
mengeluarkan nilai 24.3 MPa berbanding TPU tulen; campuran terbaik. Nilai modulus Young meningkat apabila pembebanan HNTs
meningkat. Pemanjangan menyusut dengan peningkatkan pembebanan HNTs.
Keputusan FESEM menunjukkan bahawa HNTs
meresap ke dalam matriks TPU. Keputusan analisis TGA menunjukkan
bahawa penambahan 1 % bt. HNTs telah meningkatkan sifat terma.
Oleh itu, dapat disimpulkan bahawa HNTs-TPU telah
menambah baik sifat tegangan dan fizikal berbanding dengan TPU tulen
berdasarkan kesan penambahan nano pengisi.
Kata kunci: Nano komposit; sifat fizikal; sifat
mekanik; termoplastik poliuretana; tiub nano haloisit
REFERENCES
ASTM. 1998. ASTM D-638 type V-Standard Test Method for
Tensile Properties of Plastics.
Barick, A.K. & Tripathy, D.K. 2011. Preparation,
characterization and properties of acid functionalized multi-walled carbon
nanotube reinforced thermoplastic polyurethane nanocomposites. Materials
Science and Engineering: B 176: 1435-1447.
Bian, J., Lin, H.L., He, F.X., Wei, X.W., Chang, I.T. &
Sancaktar, E. 2013. Fabrication of microwave exfoliated graphite oxide
reinforced thermoplastic polyurethane nanocomposites: Effects of filler on
morphology, mechanical, thermal and conductive properties. Composites Part
A: Applied Science and Manufacturing 47: 72-82.
Boubakri, A., Haddar, N., Elleuch, K. & Bienvenu, Y.
2010. Impact of aging conditions on mechanical properties of thermoplastic
polyurethane. Materials & Design 31: 4194- 4201.
Boubakri, A., Elleuch, K., Guermazi, N. & Ayedi, H.
2009. Investigations on hygrothermal aging of thermoplastic polyurethane
material. Materials & Design 30: 3958-3965.
Cheng, W., Dong, S. & Wang, E. 2002. Colloid chemical
approach to nanoelectrode ensembles with highly controllable active area
fraction. Analytical Chemistry 74: 3599-3604.
Deng, S., Zhang, J. & Ye, L. 2009. Halloysite-epoxy
nanocomposites with improved particle dispersion through ball mill
homogenisation and chemical treatments. Composites Science and Technology 69:
2497-2505.
Du, M., Guo, B. & Jia, D. 2010. Newly emerging
applications of halloysite nanotubes: a review. Polymer International 59:
574-582.
Gholami, M. & Mir Mohamad Sadeghi, G. 2015.
Investigating the effects of chemical modification of clay nanoparticles on
thermal degradation and mechanical properties of TPU/nanoclay composites. Journal
of Particle Science & Technology 1: 1-11.
Guo, B., Zou, Q., Lei, Y., Du, M., Liu, M. & Jia, D.
2009. Crystallization behavior of polyamide 6/halloysite nanotubes
nanocomposites. Thermochimica Acta 484: 48-56.
Ha, C.S., Kim, Y., Lee, W.K., Cho, W.J. & Kim, Y. 1998.
Fracture toughness and properties of plasticized PVC and thermoplastic
polyurethane blends. Polymer 39: 4765-4772.
Ismail, H., Pasbakhsh, P., Fauzi, M.A. & Bakar, A.A.
2008. Morphological, thermal and tensile properties of halloysite nanotubes
filled ethylene propylene diene monomer (EPDM) nanocomposites. Polymer
Testing 27: 841-850.
Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D.
& Delvaux, B. 2005. Halloysite clay minerals-a review. Clay Minerals 40:
383-426.
Kelly, H., Deasy, P., Ziaka, E. & Claffey, N. 2004.
Formulation and preliminary in vivo dog studies of a novel drug delivery
system for the treatment of periodontitis. International Journal of
Pharmaceutics 274: 167-183.
Lecouvet, B., Gutierrez, J., Sclavons, M. & Bailly, C.
2011a. Structure-property relationships in polyamide 12/halloysite nanotube
nanocomposites. Polymer Degradation and Stability 96: 226-235.
Lecouvet, B., Sclavons, M., Bourbigot, S., Devaux, J. &
Bailly, C. 2011b. Water-assisted extrusion as a novel processing route to
prepare polypropylene/halloysite nanotube nanocomposites: structure and
properties. Polymer 52: 4284-4295.
Li, C., Han, J., Huang, Q., Xu, H., Tao, J. & Li, X.
2012. Microstructure development of thermoplastic polyurethanes under
compression: The influence from first-order structure to aggregation structure
and a structural optimization. Polymer 53: 1138-1147.
Liu, C., Luo, Y.F., Jia, Z.X., Zhong, B.C., Li, S.Q., Guo,
B.C. & Jia, D.M. 2011. Enhancement of mechanical properties of poly (vinyl
chloride) with polymethyl methacrylate-grafted halloysite nanotube. Express
Polym. Lett. 5: 591-603.
Marini, J., Pollet, E., Averous, L. & Bretas, R.E.S.
2014. Elaboration and properties of novel biobased nanocomposites with
halloysite nanotubes and thermoplastic polyurethane from dimerized fatty acids. Polymer 55: 5226-5234.
Marney, D.C.O., Russell, L.J., Wu, D.Y., Nguyen, T., Cramm,
D., Rigopoulos, N., Wright, N & Greaves, M. 2008. The suitability of
halloysite nanotubes as a fire retardant for nylon 6. Polymer Degradation
and Stability 93(10): 1971-1978.
Prashantha, K., Lacrampe, M. & Krawczak, P. 2011a.
Processing and characterization of halloysite nanotubes filled polypropylene
nanocomposites based on a masterbatch route: effect of halloysites treatment on
structural and mechanical properties. Express Polymer Letters 5:
295-307.
Prashantha,
K., Schmitt, H., Lacrampe, M. & Krawczak, P. 2011b. Mechanical behaviour
and essential work of fracture of halloysite nanotubes filled polyamide 6
nanocomposites. Composites Science and Technology 71: 1859-1866.
Price,
R.R., Gaber, B.P. & Lvov, Y. 2001. In-vitro release characteristics
of tetracycline HCl, khellin and nicotinamide adenine dineculeotide from
halloysite; a cylindrical mineral. Journal of Microencapsulation 18:
713-722.
Shchukin,
D., Price, R., Sukhorukov, G. & Lvov, Y. 2005. Biomimetic synthesis of
vaterite in the interior of clay nanotubules. Small 1: 510-513.
Wang
X. & Luo, X. 2004. A polymer network based on thermoplastic polyurethane
and ethylene-propylene-diene elastomer via melt blending: morphology,
mechanical properties, and rheology. European Polymer Journal 40:
2391-2399.
Yilgor,
I., Yilgor, E., Guler, I.G., Ward, T.C. & Wilkes, G.L. 2006. FTIR
investigation of the influence of diisocyanate symmetry on the morphology
development in model segmented polyurethanes. Polymer 47: 4105-4114.
Zhou,
W.Y., Guo, B., Liu, M., Liao, R., Rabie, A.B.M. & Jia, D. 2010. Poly (vinyl alcohol)/halloysite nanotubes
bionanocomposite films: properties and in vitro osteoblasts and
fibroblasts response. Journal of Biomedical Materials Research Part A 93:
1574-1587.
*Corresponding
author; email: taysersumer@gmail.com
|