Sains Malaysiana 45(1)(2016): 87–97
The Use of BLRP Model for Disaggregating
Daily Rainfall Affected by Monsoon in Peninsular Malaysia
(Penggunaan Model BLRP
untuk Mengasingkan Curahan Hujan Harian Terjejas oleh
Monsun di Semenanjung Malaysia)
HARISAWENI, ZULKIFLI
YUSOP*
& FADHILAH YUSOF
Centre for Environment Sustainability
and Water Security (IPASA)
Faculty of Civil Engineering, Universiti
Teknologi Malaysia, 81310 Skudai,
Johor Darul Takzim, Malaysia
Received: 16 July 2014/Accepted:
14 November 2014
ABSTRACT
Rainfall intensity is the main
input variable in various hydrological analysis and modeling. Unfortunately,
the quality of rainfall data is often poor and reliable data records
are available at coarse intervals such as yearly, monthly and daily.
Short interval rainfall records are scarce because of high cost
and low reliability of the measurement and the monitoring systems.
One way to solve this problem is by disaggregating the coarse intervals
to generate the short one using the stochastic method. This paper
describes the use of the Bartlett Lewis Rectangular Pulse (BLRP) model. The method was used to disaggregate
10 years of daily data for generating hourly data from 5 rainfall
stations in Kelantan as representative area affected by monsoon
period and 5 rainfall stations in Damansara affected by inter-monsoon
period. The models were evaluated on their ability to reproduce
standard and extreme rainfall model statistics derived from the
historical record over disaggregation simulation results. The disaggregation
of daily to hourly rainfall produced monthly and daily means and
variances that closely match the historical records. However, for
the disaggregation of daily to hourly rainfall, the standard deviation
values are lower than the historical ones. Despite the marked differences
in the standard deviation, both data series exhibit similar patterns
and the model adequately preserve the trends of all the properties
used in evaluating its performances.
Keywords: Bartlett Lewis rectangular
pulse model; daily to hourly; disaggregation; Inter-monsoon; monsoon
ABSTRAK
Keamatan hujan adalah pemboleh
ubah input utama dalam pelbagai analisis hidrologi dan pemodelan.
Malangnya, kualiti data hujan selalunya lemah dan rekod data yang
boleh dipercayai diperoleh pada jangka masa kasar seperti tahunan,
bulanan dan harian. Rekod hujan selang pendek adalah terhad kerana
kos yang tinggi serta kebolehpercayaan pengukuran yang rendah dan
sistem pemantauan. Salah satu cara untuk menyelesaikan masalah ini
adalah dengan mengasingkan selang kasar untuk menghasilkan yang
pendek menggunakan kaedah stokastik. Kertas kerja ini menghuraikan
penggunaan model segiempat denyut Bartlett Lewis (BLRP).
Kaedah ini digunakan untuk mengumpul data 10 tahun setiap hari untuk
menjana data setiap jam dari 5 stesen hujan di Kelantan sebagai
kawasan wakil dipengaruhi oleh tempoh monsun dan 5 stesen hujan
di Damansara dipengaruhi oleh tempoh antara monsun. Model dinilai
berdasarkan keupayaan mereka untuk menghasilkan semula statistik
model piawai dan hujan melampau yang diperoleh daripada rekod lampau
ke atas penyampaian simulasi pengasingan. Pengasingan daripada setiap
hari untuk hujan setiap jam dihasilkan melalui cara bulanan dan
harian dan perbezaan yang rapat sepadan dengan rekod lampau. Walau
bagaimanapun, bagi pengasingan daripada setiap hari untuk hujan
setiap jam, nilai sisihan piawai adalah lebih rendah daripada rekod
lampau. Walaupun perbezaan ketara dalam sisihan piawai, kedua-dua
siri data menunjukkan corak yang sama dan model mengekalkan trend
semua sifat secukupnya yang digunakan dalam menilai prestasinya.
Kata kunci: Antara-monsun; harian kepada jam; model segiempat denyut
Bartlett Lewis; monsun; pengasingan
REFERENCES
Ashraf, M.A., Maah,
M.J. & Yusoff, I. 2011. Proposed design of anaerobic wetland
system for treatment of mining waste water at former tin mining
catchmet. Oriental Journal of Chemistry 27(3): 789-810.
Bo, Z., Islam,
S. & Eltahir, E.A.B. 1994. Aggregation-disaggregation properties
of a stochastic rainfall model. Water Resources Research 30:
3423-3435.
Burguen͂o,
A., Martínez, M.D., Lana, X. & Serra, C. 2005. Statistical distributions
if the daily rainfall regime in Catalonia (Northeastern Spain) for
the years 1950-2000. International Journal Climatology 25:
1381-1403.
Chang, C-L., Lo,
S-L. & Yu, S-L. 2006. The parameter optimization in the inverse
distance method by genetic algorithm for estimating precipitation.
Environmental Monitoring and Assessment 117: 145-155.
Cowpertwait, P.S.P.
1991. Further developments of the Neyman- Scott clustered point
process for modeling rainfall. Water Resources Research 27:
1431-1438.
Cowpertwait, P.S.P.,
O’Connell, P.E., Metcalfe, A.V. & Mawdsley, J.A. 1996a. Stochastic
point process modelling of rainfall. I. Single-site fitting and
validation. Journal of Hydrology 175: 17-46.
Cowpertwait, P.S.P.,
O’Connell, P.E., Metcalfe, A.V. & Mawdsley, J.A. 1996b. Stochastic
point process modelling of rainfall. II. Regionalisation and disaggregation.
Journal of Hydrology 175: 47-65.
Debele, B., Srinivasan,
R. & Parlange, J.Y. 2009. Hourly analyses of hydrological and
water quality simulations using the ESWAT model. Water Resources
Management 23: 303-324.
Deidda, R. &
Puliga, M. 2006. Sensitivity of goodness-of-fit statistics to rainfall
data rounding off. Physics and Chemistry of the Earth 31:
1240-1251.
Duan, J., Sikka,
A.K. & Grant, G.E. 1995. A comparison of stochastic models for
generating daily precipitation at the H.J. Andrews Experimental
Forest. Northwest Science 69: 318-329.
Entekhabi, D.,
Rodriguez-Iturbe, I. & Eagleson, P.S. 1989. Probabilistic representation
of the temporal rainfall process by a modified Neyman-Scott rectangular
pulse model: Parameter estimation and validation. Water Resources
Research 25: 295-302.
Glasbey, C.A.,
Cooper, G. & McGechan, M.B. 1995. Disaggregation of daily rainfall
by conditional simulation from a point-process model. Journal
of Hydrology 165: 1-9.
Gupta, H., Sorooshian,
S. & Yapo, P. 1999. Status of automatic calibration for hydrologic
models: Comparison with multilevel expert calibration. Journal
of Hydrologic Engineering 4: 135-143.
Gyasi-Agyei, Y.
2005. Stochastic disaggregation of daily rainfall into one-hour
time scale. Journal of Hydrology 309: 178-190.
Gyasi-Agyei, Y.
1999. Identification of regional parameters of a stochastic model
for rainfall disaggregation. Journal of Hydrology 223: 148-163.
Gyasi-Agyei, Y.
& Mahbub, S.M.P.B. 2007. A stochastic model for daily rainfall
disaggregation into fine time scale for a large region. Journal
of Hydrology 347: 358-370.
Hanaish, I.S.,
Ibrahim, K. & Jemain, A.A. 2011. Stochastic modeling of rainfall
in peninsular Malaysia using Bartlett Lewis rectangular pulses models.
Modelling and Simulation in Engineering 2011: Article ID
253735.
Hershenhorn, J.
& Woolhiser, D.A. 1987. Disaggregation of daily rainfall. Journal
of Hydrology 95: 299-322.
Hidayah, E., Iriawan,
N., Nadjadji, A. & Edijatno 2010. Evaluating error of temporal
disaggregation from daily into hourly rainfall using Heytos model
at Sampean catchments area. Majalah IPTEK, Institut Teknologi
Sepuluh November, Surabaya. pp. 23-28.
Koutsoyiannis,
D. 2001. Coupling stochastic models of different timescales. Water
Resources Research 37: 379-391.
Koutsoyiannis,
D. 1994. A stochastic disaggregation method for design storm and
flood synthesis. Journal of Hydrology 156: 193-225.
Koutsoyiannis,
D. & Onof, C. 2001. Rainfall disaggregation using adjusting
procedures on a Poisson cluster model. Journal of Hydrology 246:
109-122.
Koutsoyiannis,
D. & Xanthopoulos, T. 1990. A dynamic model for short-scale
rainfall disaggregation. Hydrological Sciences Journal 35:
303-322.
Koutsoyiannis,
D., Onof, C. & Wheater, H.S. 2003. Multivariate rainfall disaggregation
at a fine timescale. Water Resources Research 39(7): 1173.
Lo Presti, R.,
Barca, E. & Passarella, G. 2010. A methodology for treating
missing data applied to daily rainfall data in the Candelaro River
Basin (Italy). Environmental Monitoring and Assessment 160:
1-22.
Lu, Y.
& Qin, X.S. 2012. Comparison of stochastic point process models
of rainfall in Singapore. Proceedings of 2012 International Conference
of World Academy on Science, Engineering and Technology (WASET)
68: 1234-1238.
Noor, M.J., Sultana, S., Fatma,
S., Ahmad, M., Zafar, M., Sarfraz, M., Balkhyour, M.A., Safi, S.Z.
& Ashraf, M.A. 2014. Estimation of anticipated performance index
and air pollution tolerance index and of vegetation around the marble
industrial areas of Potwar region: bioindicators of plant pollution
response. Environmental Geochemistry and Health DOI: 10.1007/s10653-014-
9657-9.
Olofintoye, O.O., Sule, B.F. &
Salami, A.W. 2009. Best-fit probability distribution model for peak
daily rainfall of selected cities in Nigeria. New York Science
Journal 2(3): 1-12.
Onof, C. & Wheater, H.S. 1994.
Improvements to the modeling of British rainfall using a modified
random parameter Bartlett- Lewis rectangular pulses model. Journal
Hydrology 157: 177-195.
Onof, C. & Wheater, H.S. 1993.
Modelling of British rainfall using a random parameter Bartlett-Lewis
rectangular pulse model. Journal of Hydrology 149: 67-95.
Rodriguez-Iturbe, I., Cox, D.R.
& Isham, V. 1988. A point process model for rainfall: Further
developments. Proceedings of The Royal Society A: Mathematical,
Physical and Engineering Sciences 417: 283-298.
Rodriguez-Iturbe, I., Cox, D.R.
& Isham, V. 1987. Some models for rainfall based on stochastic
point process. Proceedings of The Royal Society A: Mathematical,
Physical and Engineering Sciences 410: 269-288.
Salarpour, M., Yusop, Z., Jajarmizadeh,
M. & Yusof, F. 2014. Development of generalized feed forward
network for predicting annual flood (depth) of a tropical river.
Sains Malaysiana 43(12): 1865-1871.
Suhaila, J. & Jemain, A.A. 2008.
Fitting the statistical distribution for daily rainfall in Peninsular
Malaysia based on AIC criterion. Journal of Applied Sciences
Research 4: 1846-1857.
Suhaila, J. & Jemain, A.A. 2007.
Fitting daily rainfall amount in Peninsular Malaysia using several
types of exponential distributions. Journal of Applied Sciences
Research 3: 1027-1036.
Sultana, N., Akib, S., Ashraf, M.A.
& Abidin, M.R.Z. 2015. Quality assessment of harvested rainwater
from green roofs under tropical climate. Desalination and Water
Treatment DOI: 10.1080/19443994.2015.1015307.
Valencia, D. & Schaake, Jr.
J.C. 1973. Disaggregation processes in stochastic hydrology. Water
Resources Research 9: 580- 585.
Verhoest, N., Troch, P.A. &
De Troch, F.P. 1997. On the applicability of Bartlett-lewis rectangular
pulses models in the modeling of design storms at a point. Journal
of Hydrology 202: 108-120.
*Corresponding author;
email: zulyusop@utm.my
|