Sains Malaysiana 45(1)(2016): 71–77

Liposomes as Amphiphilic Carriers: Encapsulation and Stability Aspects

(Liposom sebagai Pengangkut Amfifili: Aspek Pengkapsulan dan Kestabilan)

SUMAIRA NAEEM1, LIK VOON KIEW2, LIP YONG CHUNG3, MUHAMMAD AQEEL ASHRAF4,5 & MISNI BIN MISRAN*1

 

1Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur

Malaysia

 

2Department of Pharmacology, Faculty of Medicine Building, University of Malaya, 50603 Kuala Lumpur, Malaysia

 

3Department of Pharmacy, Faculty of Medicine Building, University of Malaya, 50603 Kuala Lumpur, Malaysia

 

4Department of Geology, Faculty of Science, University of Malaya 50603 Kuala Lumpur

Malaysia

 

5Water Research Unit, Faculty of Science and Natural Resources, University Malaysia Sabah,

88400 Kota Kinabalu, Sabah, Malaysia

 

 

Received: 21 July 2014/Accepted: 2 December 2014

 

ABSTRACT

The aimed of the present study was to evaluate the liposomal formulation regarding its hydrophobicity. The evaluation studies were done based on the amphiphilic nature of the phospholipid liposomes. This paper highlights the importance of such type of lipid based carriers by encapsulation hydrophobic and hydrophilic drug models. Crystal violet and Nile red were used to represent hydrophilic and hydrophobic moieties before moving to pharmaceutical implications. The formulated liposomes were compared for their hydrophobicity using percent encapsulation efficiencies. The purpose of this formulation was to mimic the red blood cells. The average particle size of 120±25.1 and zeta potential of -10.2±1.4 were in good agreement with reported characteristics of the red blood cells. Per cent encapsulation efficiency for crystal violet was more obvious with a value of 68.1 as compared to 36.5% for Nile red. The prepared liposomes were quite stable for a period of one month. Our findings reflect the fate of our system more suitable for hydrophilic drugs under the given set of formulation parameters.

 

Keywords: Crystal violet; drug hydrophobicity; Nile red; percent encapsulations; phospholipid carriers

 

ABSTRAK

Matlamat kajian ini adalah untuk menilai penggubalan liposomal mengenai kehidrofobiannya. Kajian penilaian telah dijalankan berdasarkan sifat amfili daripada liposom fosfolipid. Kertas kerja ini membincangkan kepentingan apa-apa jenis penerbangan yang berpangkalan lipid oleh hidrofobi pengkapsulan dan model dadah hidrofili. Kristal ungu dan Nil merah telah digunakan untuk mewakili moieti hidrofili dan hidrofobi sebelum berpindah ke implikasi farmaseutik. Formulasi liposom dibandingkan untuk kehidrofobiannya menggunakan suatu kecekapan pengkapsulan peratus. Tujuan pembentukan ini adalah untuk meniru sel darah merah. Purata saiz zarah 120±25.1 dan potensi zeta daripada -10.2±1.4 adalah sama dengan ciri yang dilaporkan untuk sel darah merah. Peratus kecekapan pengkapsulan untuk kristal ungu adalah lebih jelas dengan nilai sebanyak 68.1 berbanding 36.5% bagi Nil merah. Liposom yang disediakan agak stabil untuk tempoh satu bulan. Penemuan kami menunjukkan sistem kami lebih sesuai untuk dadah hidrofili dengan parameter formulasi yang diberikan.

 

Kata kunci: Dadah kehidrofobiannya; kristal ungu; Nil merah; pembawa fosfolipid; peratus pengkapsulan

REFERENCES

Ashraf, M.A., Khan, A., Sarfraz, M. & Ahmad, M. 2015. Effectiveness of silica based sol-gel microencapsulation method for odorants and flavours leading to sustainable environment. Frontiers in Chemistry 3: 1-42.

Batool, S., Khalid, A., Chowdury, A.J.K., Sarfraz, M., Balkhair, K.S. & Ashraf, M.A. 2015. Impacts of azo dye on ammonium oxidation process and ammonia oxidizing soil bacteria. RSC Advances 5: 34812-34820.

Bennett, S., Mast, N., Lavigne, K., Skalla, W., Banerjee, S., Sargeant, T. & Stopek, J. 2015. Hydrogel Implants with Varying Degrees of Crosslinking. US Patent 20,150,024,022.

Buckley, S., Shi, W., Xu, W., Frey, M.R., Moats, R., Pardo, A., Selman, M. & Warburton, D. 2015. Increased alveolar soluble annexin V promotes lung inflammation and fibrosis. European Respiratory Journal DOI: 10.1183/09031936.00002115.

Cao, Z., Yu, Q., Xue, H., Cheng, G. & Jiang, S. 2010. Nanoparticles for drug delivery prepared from amphiphilic PLGA zwitterionic block copolymers with sharp contrast in polarity between two blocks. Angewandte Chemie 122: 3859-3864.

Chapanian, R., Constantinescu, I., Rossi, N.A., Medvedev, N., Brooks, D.E., Scott, M.D. & Kizhakkedathu, J.N. 2012. Influence of polymer architecture on antigens camouflage, CD47 protection and complement mediated lysis of surface grafted red blood cells. Biomaterials 33: 7871-7883.

Chen, J., Lu, W.L., Gu, W., Lu, S.S., Chen, Z.P., Cai, B.C. & Yang, X.X. 2014. Drug-in-cyclodextrin-in-liposomes: A promising delivery system for hydrophobic drugs. Expert Opinion on Drug Delivery 11: 565-577.

Cottenye, N., Cui, Z.K., Wilkinson, K.J., Barbeau, J. & Lafleur, M. 2013. Interactions between non-phospholipid liposomes containing cetylpyridinium chloride and biofilms of Streptococcus mutans: Modulation of the adhesion and of the biodistribution. Biofouling 29: 817-827.

Dai, W., Yu, H., Ma, N. & Yan, X. 2015. Adsorption equilibrium and kinetic studies of crystal violet and naphthol green on torreya-grandis-skin-based activated carbon. Korean Journal of Chemical Engineering 32: 335-341.

Dawidczyk, C.M., Kim, C., Park, J.H., Russell, L.M., Lee, K.H., Pomper, M.G. & Searson, P.C. 2014. State-of-the-art in design rules for drug delivery platforms: Lessons learned from FDA-approved nanomedicines. Journal of Controlled Release 187: 133-144.

Dimitriu, L., Dimitriu, A., Miron, I. & Mandric, C. 2014. PS- 091 dispersion of the Qt and Qtc intervals-early marker of anthracycline induced cardiotoxicity in children with malignant hemopathies. Archives of Disease in Childhood 99: A143-A143.

Dyondi, D., Sarkar, A. & Banerjee, R. 2015. Joint surface-active phospholipid-mimetic liposomes for intra-articular delivery of paclitaxel. Journal of Biomedical Nanotechnology 11: 1225-1235.

El-Ridy, M.S., El-Shamy, A.E.A., Ramadan, A., Abdel-Rahman, R.F., Awad, G.A., El-Batal, A., Mohsen, A.M. & Darwish, A.B. 2015. Liposomal encapsulation of amikacin sulphate for optimizing its efficacy and safety. British Journal of Pharmaceutical Research 5: 98-116.

Elliott, R., Katsov, K., Schick, M. & Szleifer, I. 2005. Phase separation of saturated and mono-unsaturated lipids as determined from a microscopic model. J. Chem. Phys. 122: 44904.

Hincha, D.K. 2008. Effects of alpha-tocopherol (vitamin E) on the stability and lipid dynamics of model membranes mimicking the lipid composition of plant chloroplast membranes. FEBS Lett. 582: 3687-3692.

Hou, Z., Li, Y., Huang, Y., Zhou, C., Lin, J., Wang, Y., Cui, F., Zhou, S., Jia, M., Ye, S. & Zhang, Q. 2013. Phytosomes loaded with mitomycin C-soybean phosphatidylcholine complex developed for drug delivery. Mol. Pharm. 10: 90-101.

Huang, Y.X., Wu, Z.J., Mehrishi, J., Huang, B.T., Chen, X.Y., Zheng, X.J., Liu, W.J. & Luo, M. 2011a. Human red blood cell aging: Correlative changes in surface charge and cell properties. Journal of Cellular and Molecular Medicine 15: 2634-2642.

Karewicz, A., Bielska, D., Loboda, A., Gzyl-Malcher, B., Bednar, J., Jozkowicz, A., Dulak, J. & Nowakowska, M. 2013. Curcumin-containing liposomes stabilized by thin layers of chitosan derivatives. Colloids Surf B Biointerfaces 109: 307-316.

Kastner, E., Verma, V., Lowry, D. & Perrie, Y. 2015. Microfluidic-controlled manufacture of liposomes for the solubilisation of a poorly water soluble drug. International Journal of Pharmaceutics 485: 122-130.

Kaye, S.B., Lubinski, J., Matulonis, U., Ang, J.E., Gourley, C., Karlan, B.Y., Amnon, A., Bell-McGuinn, K.M., Chen, L.M. & Friedlander, M. 2012. Phase II, open-label, randomized, multicenter study comparing the efficacy and safety of olaparib, a poly (ADP-ribose) polymerase inhibitor, and pegylated liposomal doxorubicin in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer. Journal of Clinical Oncology 30: 372-379.

Khaskheli, A.A., Talpur, F.N., Ashraf, M.A., Cebeci, A., Jawaid, S. & Afridi, H.I. 2015. Monitoring the Rhizopus oryzae lipase catalyzed hydrolysis of castor oil by ATR-FTIR spectroscopy. Journal of Molecular Catalysis B: Enzymatic 113: 56-61.

Krasnici, S., Werner, A., Eichhorn, M.E., Schmitt-Sody, M., Pahernik, S.A., Sauer, B., Schulze, B., Teifel, M., Michaelis, U., Naujoks, K. & Dellian, M. 2003. Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels. International Journal of Cancer 105: 561-567.

Krisenko, M.O., Cartagena, A., Raman, A. & Geahlen, R.L. 2014. Nanomechanical property maps of breast cancer cells as determined by multiharmonic atomic force microscopy reveal syk-dependent changes in microtubule stability mediated by MAP1B. Biochemistry 54(1): 60-68.

Kurniasih, I.N., Liang, H., Mohr, P.C., Khot, G., Rabe, J.R.P. & Mohr, A. 2015. Nile red dye in aqueous surfactant and micellar solution. Langmuir 31: 2639-2648.

Lajunen, T., Viitala, L., Kontturi, L.S., Laaksonen, T., Liang, H., Vuorimaa-Laukkanen, E., Viitala, T., Le Guével, X., Yliperttula, M. & Murtomäki, L. 2015. Light induced cytosolic drug delivery from liposomes with gold nanoparticles. Journal of Controlled Release 203: 85-98.

Lee, L., Salimon, J., Yarmo, M.A. & Misran, M. 2010. Viscoelastic properties of anionic brominated surfactants. Sains Malaysiana 39: 753-760.

Manca, M.L., Sinico, C., Maccioni, A.M., Diez, O., Fadda, A.M. & Manconi, M. 2012. Composition influence on pulmonary delivery of rifampicin liposomes. Pharmaceutics 4: 590-606.

Merkel, T.J., Jones, S.W., Herlihy, K.P., Kersey, F.R., Shields, A.R., Napier, M., Luft, J.C., Wu, H., Zamboni, W.C. & Wang, A.Z. 2011. Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proceedings of the National Academy of Sciences 108: 586-591.

Mfuh, A.M., Mahindaratne, M.P., Quintero, M.V., Lakner, F.J., Bao, A., Goins, B.A., Phillips, W.T. & Negrete, G.R. 2011. Novel asparagine-derived lipid enhances distearoylphosphatidylcholine bilayer resistance to acidic conditions. Langmuir 27: 4447-4455.

Millan, C.G., Marinero, M.A.L.S., Castaneda, A.Z. & Lanao, J.M. 2004. Drug, enzyme and peptide delivery using erythrocytes as carriers. Journal of Controlled Release 95: 27-49.

Ming, L., Haiqiang, L., Xin, N. & Ashraf, M.A. 2015. Characteristic studies of micron zinc particle hydrolysis in a fixed bed reactor. Polish Maritime Research S1 22: 112-120.

Mosca, M., Ceglie, A. & Ambrosone, L. 2011. Effect of membrane composition on lipid oxidation in liposomes. Chemistry and Physics of Lipids 164: 158-165.

Papancea, A., Patachia, S. & Dobritoiu, R. 2015. Crystal violet dye sorption and transport in/through biobased PVA cryogel membranes. Journal of Applied Polymer Science 132(17): 41838.

Parente-Pereira, A.C., Shmeeda, H., Whilding, L.M., Zambirinis, C.P., Foster, J., van Der Stegen, S.J., Beatson, R., Zabinski, T., Brewig, N. & Sosabowski, J.K. 2014. Adoptive immunotherapy of epithelial ovarian cancer with Vγ9Vδ2 T cells, potentiated by liposomal alendronic acid. The Journal of Immunology 193: 5557-5566.

Rafiyath, S.M., Rasul, M., Lee, B., Wei, G., Lamba, G. & Liu, D. 2012. Comparison of safety and toxicity of liposomal doxorubicin vs. conventional anthracyclines: A meta-analysis. Exp. Hematol. Oncol. 1: 10.

Raimundo, K., Biskupiak, J., Goodman, M., Silverstein, S. & Asche, C. 2013. Cost effectiveness of liposomal doxorubicin vs. paclitaxel for the treatment of advanced AIDS-Kaposi’s sarcoma. Journal of Medical Economics 16: 606-613.

Ramireddy, R.R., Prasad, P., Finne, A. & Thayumanavan, S. 2015. Zwitterionic amphiphilic homopolymer assemblies. Polymer Chemistry 6: 6083-6087.

Ran, R., Liu, Y., Gao, H., Kuang, Q., Zhang, Q., Tang, J., Fu, H., Zhang, Z. & He, Q. 2015. PEGylated hyaluronic acid-modified liposomal delivery system with anti-γ- glutamylcyclotransferase siRNA for drug-resistant MCF-7 breast cancer therapy. Journal of Pharmaceutical Sciences 104: 476-484.

Raymond, A.K., Beasley, G.M., Broadwater, G., Augustine, C.K., Padussis, J.C., Turley, R., Peterson, B., Seigler, H., Pruitt, S.K. & Tyler, D.S. 2011. Current trends in regional therapy for melanoma: Lessons learned from 225 regional chemotherapy treatments between 1995 and 2010 at a single institution. Journal of the American College of Surgeons 213: 306-316.

Rossi, L., Castro, M., D’orio, F., Damonte, G., Serafini, S., Bigi, L., Panzani, I., Novelli, G., Dallapiccola, B., Panunzi, S., Di Carlo, P., Bella, S. & Magnani, M. 2004. Low doses of dexamethasone constantly delivered by autologous erythrocytes slow the progression of lung disease in cystic fibrosis patients. Blood Cells Mol. Dis. 33: 57-63.

Sasaki, H., Karasawa, K., Hironaka, K., Tahara, K., Tozuka, Y. & Takeuchi, H. 2013. Retinal drug delivery using eyedrop preparations of poly-l-lysine-modified liposomes. European Journal of Pharmaceutics and Biopharmaceutics 83: 364- 369.

Schaffran, T., Li, J., Karlsson, G., Edwards, K., Winterhalter, M. & Gabel, D. 2010. Interaction of N,N,N-trialkylammonioundecahydro-closo-dodecaborates with dipalmitoyl phosphatidylcholine liposomes. Chem. Phys. Lipids 163: 64-73.

Surhio, M.A., Talpur, F.N., Nizamani, S.M., Amin, F., Bong, C.W., Lee, C.W., Ashraf, M.A. & Shahid, M.R. 2014. Complete degradation of dimethyl phthalate by biochemical cooperation of the Bacillus thuringiensis strain isolated from cotton field soil. RSC Advances 4: 55960-55966.

Szebeni, J., Bedőcs, P., Rozsnyay, Z., Weiszhár, Z., Urbanics, R., Rosivall, L., Cohen, R., Garbuzenko, O., Báthori, G. & Tóth, M. 2012. Liposome-induced complement activation and related cardiopulmonary distress in pigs: Factors promoting reactogenicity of Doxil and AmBisome. Nanomedicine: Nanotechnology, Biology and Medicine 8: 176-184.

Wu, J., Zhao, L., Xu, X., Bertrand, N., Choi, W.I., Yameen, B., Shi, J., Shah, V., Mulvale, M. & Maclean, J.L. 2015. Hydrophobic cysteine poly (disulfide)-based redox-hypersensitive nanoparticle platform for cancer theranostics. Angewandte Chemie 127: 9350-9355.

Zhou, W., Liu, W., Zou, L., Liu, W., Liu, C., Liang, R. & Chen, J. 2014. Storage stability and skin permeation of vitamin C liposomes improved by pectin coating. Colloids and Surfaces B: Biointerfaces 117: 330-337.

Zhu, C., Li, S., Luo, M., Zhou, X., Niu, Y., Lin, M., Zhu, J., Cao, Z., Lu, X., Wen, T., Xie, Z., Schleyer, P.V. & Xia, H. 2013. Stabilization of anti-aromatic and strained five-membered rings with a transition metal. Nature Chemistry 5: 698-703.

 

 

*Corresponding author; email: misni@um.edu.my

 

 

 

previous