Sains Malaysiana 45(10)(2016): 1573–1578
Power Divergence Statistics under Quasi
Independence Model for Square
Contingency Tables
(Statistik Pencapahan
Kuasa Model Kuasi Ketakbersandaraan untuk Jadual Kontingensi
Segi Empat
Sama)
SERPIL AKTAŞ*
Department of Statistics,
Hacettepe University, 06800 Beytepe, Ankara,Turkey
Received: 10 May
2015/Accepted: 7 March 2016
ABSTRACT
In incomplete contingency tables,
some cells may contain structural zeros. The quasi-independence
model, which is a generalization of the independence model,
is most commonly model used to analyze incomplete contingency
tables. Goodness of fit tests of the quasi-independence model
are usually based on Pearson chi square
test statistic and likelihood ratio test statistic. In power
divergence statistics family, the selection of power divergence
parameter is of interest in multivariate discrete data. In this
study, a simulation study is conducted to evaluate the performance
of the power divergence statistics under quasi independence
model for particular power divergence parameters in terms of
power values.
Keywords: Power divergence
family; square contingency tables; structural zeros
ABSTRAK
Dalam jadual kontingensi
tidak lengkap,
sesetengah sel boleh mengandungi struktur sifar. Model kuasi ketakbersandaran
yang merupakan suatu
generalisasi daripada model ketakbersandaran adalah model yang
paling biasa digunakan
untuk menganalisis
jadual kontingensi yang tidak lengkap. Ujian kebagusan penyuaian model kuasi ketakbersandaran biasanya berdasarkan statistik ujian khi kuasa dua
Pearson dan ujian
statistik nisbah kebolehjadian. Dalam keluarga statistik
pencapahan kuasa, pemilihan parameter pencapahan kuasa adalah penting
dalam data diskret
multivariat. Dalam penyelidikan ini,
suatu kajian
simulasi dijalankan untuk menilai prestasi
statistik pencapahan kuasa di bawah parameter model kuasi ketakbersandaran untuk parameter pencapahan kuasa daripada segi nilai kuasa
tertentu.
Kata kunci: Jadual
kontinjensi segi
empat sama;
kuasa keluarga
pencapahan; struktur sifar
REFERENCES
Agresti,
A. 2002.
Categorical Data Analysis.
New York:
John Wiley & Sons.
Basu, A. & Basu, S. 1998. Penalized minimum disparity
methods for multinomial models. Stat. Sin. 8.
841-860.
Bishop,
Y.M.M., Fienberg, S.E. & Holland, P.W. 1975. Discrete Multivariate
Analysis: Theory and Practice. Cambridge: MIT Press.
Cressie,
N. & Read, T.R.C. 1984. Multinomial goodness-of-fit
tests. Journal of the Royal Statistic Society, Series
B 46: 440-464.
Fienberg, S.E.
1980. The Analysis of Cross-Classified
Categorical Data. Cambridge, Massachusetts:
The MIT Press.
García-Pérez,
M.A. & Núñez-Antón, V. 2009. Accuracy of power-divergence statistics for testing independence and
homogeneity in two-way contingency tables. Communications
in Statistics - Simulation and Computation 38(3): 503-512.
Goodman, L. 1979.
A multiplicative models for square contingency tables with ordered
categories. Biometrika 61:
207-214.
Goodman, L.A. 1968.
The analysis of cross-classied data:
Independence, quasi- Independence, and interactions in contingency
tables with or without missing entries. J. Amer. Statist.
Assoc. 63: 1091-1131.
Haberman, S.J. 1979. Analysis of Qualitative Data. Volume 2 New Developments. New York: Academic Press.
Ireland,
C.T., Ku, H. & Kullback S. 1965. Symmetry and marginal
homogenity of a
R*R contingency table. JASA 64: 1323-1341.
Lawal,
H.B. 2003.
Categorical Data Analysis with SAS and
SPSS Applications. New Jersey: Lawrence Erlbaum
Associates Inc.
Lawal,
H.B. 1993.
Association symmetry and diagonal models for
occupational mobility and other similar square contingency tables
having ordered categorical variables. Biometrical
J. 35: 193-206.
McCullagh, P. 1978. A class
of parametric models for the analysis of square contingency
tables with ordered categories. Biometrika
65: 413-418.
Read, T.R.C. &
Cressie, N. 1988. Goodness-of-Fit
Statistics for Discrete Multivariate Data. New York:
Springer-Verlag.
Tomizawa, S. 1985. Analysis
of data in square contingency tables with ordered categories
using the conditional symmetry model and its decomposed models.
Environmental Health Perspectives 63: 235-239.
Zelterman, D. 1987. Goodness-of-fit
tests for large sparse multinomial distributions. J. Amer.
Statist. Assoc. 82(398): 624-629.
*Corresponding author; email: serpilaltunay@gmail.com