Sains Malaysiana 44(12)(2015): 1721–1728
An Interactively Recurrent Functional Neural Fuzzy Network with Fuzzy
Differential Evolution and Its Applications
(Rangkaian Neuron Kabur Berfungsi Interaktif Berulang
dengan Evolusi Pengkamiran Kabur dan Penggunaannya)
CHENG-JIAN LIN*1, CHIH-FENG WU2, HSUEH-YI LIN1 & CHENG-YI YU1
1Department of
Computer Science and Information Engineering, National Chin-Yi University of Technology,
Taichung City 411, Taiwan, R.O.C.
2Department of Digital Content Application and Management, Wenzao
Ursuline University of Languages, Kaohsiung City 807, Taiwan, R.O.C.
Received: 22 August 2014/Accepted: 23 June 2015
ABSTRACT
In this paper, an interactively recurrent functional neural fuzzy
network (IRFNFN) with fuzzy differential evolution (FDE)
learning method was proposed for solving the control and the prediction
problems. The traditional differential evolution (DE)
method easily gets trapped in a local optimum during the learning process, but
the proposed fuzzy differential evolution algorithm can overcome this
shortcoming. Through the information sharing of nodes in the interactive layer,
the proposed IRFNFN can effectively reduce the number of required rule
nodes and improve the overall performance of the network. Finally, the IRFNFN model and associated FDE learning algorithm were
applied to the control system of the water bath temperature and the forecast of
the sunspot number. The experimental results demonstrate the effectiveness of
the proposed method.
Keywords: Control; differential evolution; neural fuzzy network;
prediction; recurrent network
ABSTRAK
Dalam kajian ini, rangkaian neuron kabur berfungsi interaktif berulang
(IRFNFN) dengan kaedah pembelajaran evolusi pengkamiran kabur
(FDE) dicadangkan untuk menyelesaikan masalah kawalan dan
ramalan. Kaedah tradisi evolusi pengkamiran (DE)
akan terperangkap dengan mudah di dalam optimum tempatan semasa
proses pembelajaran, tetapi evolusi pengkamiran kabur algoritma
yang dicadangkan boleh mengatasi kelemahan ini. Melalui perkongsian
maklumat nod dalam lapisan interaktif, IRFNFN yang dicadangkan boleh mengurangkan bilangan nod
peraturan yang diperlukan dengan berkesan dan meningkatkan prestasi
keseluruhan rangkaian. Akhir sekali, gabungan model IRFNFN dan pembelajaran algoritma
FDE digunakan untuk sistem kawalan suhu rendaman air dan
ramalan nombor tompok matahari. Keputusan eksperimen menunjukkan
keberkesanan kaedah yang dicadangkan.
Kata kunci: Evolusi pengkamiran;
kawalan; ramalan; rangkaian berulang; rangkaian neuron kabur
REFERENCES
Ali,
M.M., Khompatraporn, C. & Zabinsky, Z.B. 2005. A numerical evaluation of
several stochastic algorithms on selected continuous global optimization test
problems. Journal of Global Optimization 31(4): 635-672.
Chen,
C.S. 2010. TSK-type self-organizing recurrent-neural-fuzzy control of linear
microstepping motor drives. IEEE Transactions on Power Electronics 25(9):
2253-2265.
Chen,
C.H., Su, M.T., Lin, C.J. & Lin, C.T. 2014. A hybrid of bacterial foraging
optimization and particle swarm optimization for evolutionary neural fuzzy
classifier design. International Journal of Fuzzy Systems 16(3):
422-433.
Chen,
C.H., Lin, C.J. & Lin, C.T. 2009. Nonlinear system control using adaptive
neural fuzzy networks based on a modified differential evolution. IEEE
Trans. On Systems, Man, and cybernetics-Part C: Applications and Reviews 39(4):
459- 473.
Chen,
Y.C. & Teng, C.C. 1995. A model reference control structure using a fuzzy
neural network. Fuzzy Sets and Systems 73: 291-312.
Gong,
W., Cai, Z.C., Ling, X. & Li, H. 2011. Enhanced differential evolution with
adaptive strategies for numerical optimization. IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics 41(2): 397-413.
Huang,
V.L., Qin, A.K. & Suganthan, P.N. 2006. Self-adaptive differential
evolution algorithm for constrained real-parameter optimization. IEEE
Congress on Evolutionary Computation pp. 215-222.
Juang,
C.F. 2002. A TSK-type recurrent fuzzy network for dynamic systems processing by
neural network and genetic algorithms. IEEE Trans. on Fuzzy Systems 10(2):
155-170.
Juang,
C.F. & Hsieh, C.D. 2010. A locally recurrent fuzzy neural network with
support vector regression for dynamic-system modeling. IEEE Transactions on
Fuzzy Systems 18(2): 261-273.
Lee,
C.H. & Teng, C.C. 2000. Identification and control of dynamic systems using
recurrent fuzzy neural networks. IEEE Trans. on Fuzzy Systems 8(4):
349-366.
Li,
J., Cheng, J.H., Shi, J.Y. & Huang, F. 2012. Brief introduction of back
propagation (BP) neural network algorithm and its improvement. In Advances
in Computer Science and Information Engineering. Berlin, Heidelberg:
Springer. pp. 553-558.
Lin,
C.J. 2004. A GA-based neural fuzzy system for temperature control. Fuzzy
Sets and Systems 143(2): 311-333.
Lin,
C.J., Lin, Y.M. & Lee, C.Y. 2010. Nonlinear system control using a
recurrent neural fuzzy network based on reinforcement particle swarm
optimization. The 3rd International Symposium on Computational Intelligence
and Design (ISCID2010). pp. 196-200.
Lin,
C.J., Chen, C.H. & Lin, C.T. 2009. A hybrid of cooperative particle swarm
optimization and cultural algorithm for neural fuzzy network and its prediction
applications. IEEE Trans. on Systems, Man, and Cybernetics--Part C:
Applications and Reviews 38(1): 55-68.
Montgomery,
J. 2010. Crossover and the different faces of differential evolution searches. Proc.
of the IEEE Congress on Evolutionary Computation. pp. 1804-1811.
Montgomery,
J. & Chen, S. 2010. An analysis of the operation of differential evolution
at high and low crossover rates. Proc. of the IEEE Congress on Evolutionary
Computation. pp. 881-888.
Natsuki,
H. & Hitoshi, I. 2003. Particle swarm optimization with Gaussian mutation. Proceedings
of the 2003 IEEE Swarm Intelligence Symposium. pp. 72-79.
Neri,
F. & Tirronen, V. 2010. Recent advances in differential evolution: A survey
and experimental analysis. Artificial Intelligence Review 33(1-2):
61-106.
Ronkkonen,
J., Kukkonen, S. & Price, K.V. 2005. Real-parameter optimization with
differential evolution. Proceedings of IEEE Congress on Evolutionary
Computation. pp. 506-513.
Saruhan,
H. 2014. Differential evolution and simulated annealing algorithms
formechanical systems design. Engineering Science and Technology, an
International Journal 17(3): 131-136.
Shang,
Y.W. & Qin, Y.H. 2006. A note on the extended rosenbrock function. Evolutionary
Computation 14(1): 119-126.
Simon,
D. 2013. Evolutionary Optimization Algorithms. New York: Wiley.
Storm,
R. & Price, K. 1997. Differential evolution - A simple and efficient
heuristic for global optimization over continuous spaces. Journal of Global
Optimization 11(4): 341-359.
Yang,
Z., Tang, K. & Yao, X. 2010. Scalability of generalized adaptive
differential evolution for large-scale continuous optimization. Soft
Computing 15(11): 2141-2155.
Wang,
J.Z., Wang, J.J., Zhang, Z.G. & Guo, S.P. 2011. Forecasting stock indices
with back propagation neural network. Expert Systems with Applications 38(11):
14346-14355.
*Corresponding
author; email: cjlin@ncut.edu.tw
|