| Sains Malaysiana 44(12)(2015): 1721–1728
          
         
             
           An Interactively Recurrent Functional Neural Fuzzy Network with Fuzzy
            Differential Evolution and Its Applications (Rangkaian Neuron Kabur Berfungsi Interaktif Berulang 
              dengan Evolusi Pengkamiran Kabur dan Penggunaannya)  
               CHENG-JIAN LIN*1, CHIH-FENG WU2, HSUEH-YI LIN1 & CHENG-YI YU1
            
           
             
           1Department of
            Computer Science and Information Engineering, National Chin-Yi University of Technology,
            Taichung City 411, Taiwan, R.O.C.
            
           
             
           2Department of Digital Content Application and Management, Wenzao
            Ursuline University of Languages, Kaohsiung City 807, Taiwan, R.O.C.
            
           
             
           Received: 22 August 2014/Accepted: 23 June 2015
            
           
             
           ABSTRACT
            
           In this paper, an interactively recurrent functional neural fuzzy
            network (IRFNFN) with fuzzy differential evolution (FDE)
            learning method was proposed for solving the control and the prediction
            problems. The traditional differential evolution (DE)
            method easily gets trapped in a local optimum during the learning process, but
            the proposed fuzzy differential evolution algorithm can overcome this
            shortcoming. Through the information sharing of nodes in the interactive layer,
            the proposed IRFNFN can effectively reduce the number of required rule
            nodes and improve the overall performance of the network. Finally, the IRFNFN model and associated FDE learning algorithm were
            applied to the control system of the water bath temperature and the forecast of
            the sunspot number. The experimental results demonstrate the effectiveness of
            the proposed method.
  
 
             
           Keywords: Control; differential evolution; neural fuzzy network;
            prediction; recurrent network
  
 
             
           ABSTRAK
            
           Dalam kajian ini, rangkaian neuron kabur berfungsi interaktif berulang 
              (IRFNFN) dengan kaedah pembelajaran evolusi pengkamiran kabur 
              (FDE) dicadangkan untuk menyelesaikan masalah kawalan dan 
              ramalan. Kaedah tradisi evolusi pengkamiran (DE) 
              akan terperangkap dengan mudah di dalam optimum tempatan semasa 
              proses pembelajaran, tetapi evolusi pengkamiran kabur algoritma 
              yang dicadangkan boleh mengatasi kelemahan ini. Melalui perkongsian 
              maklumat nod dalam lapisan interaktif, IRFNFN yang dicadangkan boleh mengurangkan bilangan nod 
              peraturan yang diperlukan dengan berkesan dan meningkatkan prestasi 
              keseluruhan rangkaian. Akhir sekali, gabungan model IRFNFN dan pembelajaran algoritma 
              FDE digunakan untuk sistem kawalan suhu rendaman air dan 
              ramalan nombor tompok matahari. Keputusan eksperimen menunjukkan 
              keberkesanan kaedah yang dicadangkan.   
             
           Kata kunci: Evolusi pengkamiran; 
              kawalan; ramalan; rangkaian berulang; rangkaian neuron kabur  
               REFERENCES
            
           Ali,
            M.M., Khompatraporn, C. & Zabinsky, Z.B. 2005. A numerical evaluation of
            several stochastic algorithms on selected continuous global optimization test
            problems. Journal of Global Optimization 31(4): 635-672.
  
           Chen,
            C.S. 2010. TSK-type self-organizing recurrent-neural-fuzzy control of linear
            microstepping motor drives. IEEE Transactions on Power Electronics 25(9):
            2253-2265.
  
           Chen,
            C.H., Su, M.T., Lin, C.J. & Lin, C.T. 2014. A hybrid of bacterial foraging
            optimization and particle swarm optimization for evolutionary neural fuzzy
            classifier design. International Journal of Fuzzy Systems 16(3):
            422-433.
  
           Chen,
            C.H., Lin, C.J. & Lin, C.T. 2009. Nonlinear system control using adaptive
            neural fuzzy networks based on a modified differential evolution. IEEE
              Trans. On Systems, Man, and cybernetics-Part C: Applications and Reviews 39(4):
            459- 473.
  
           Chen,
            Y.C. & Teng, C.C. 1995. A model reference control structure using a fuzzy
            neural network. Fuzzy Sets and Systems 73: 291-312.
  
           Gong,
            W., Cai, Z.C., Ling, X. & Li, H. 2011. Enhanced differential evolution with
            adaptive strategies for numerical optimization. IEEE Transactions on
              Systems, Man, and Cybernetics, Part B: Cybernetics 41(2): 397-413.
  
           Huang,
            V.L., Qin, A.K. & Suganthan, P.N. 2006. Self-adaptive differential
            evolution algorithm for constrained real-parameter optimization. IEEE
              Congress on Evolutionary Computation pp. 215-222.
  
           Juang,
            C.F. 2002. A TSK-type recurrent fuzzy network for dynamic systems processing by
            neural network and genetic algorithms. IEEE Trans. on Fuzzy Systems 10(2):
            155-170.
  
           Juang,
            C.F. & Hsieh, C.D. 2010. A locally recurrent fuzzy neural network with
            support vector regression for dynamic-system modeling. IEEE Transactions on
              Fuzzy Systems 18(2): 261-273.
  
           Lee,
            C.H. & Teng, C.C. 2000. Identification and control of dynamic systems using
            recurrent fuzzy neural networks. IEEE Trans. on Fuzzy Systems 8(4):
            349-366.
  
           Li,
            J., Cheng, J.H., Shi, J.Y. & Huang, F. 2012. Brief introduction of back
            propagation (BP) neural network algorithm and its improvement. In Advances
              in Computer Science and Information Engineering. Berlin, Heidelberg:
            Springer. pp. 553-558.
  
           Lin,
            C.J. 2004. A GA-based neural fuzzy system for temperature control. Fuzzy
              Sets and Systems 143(2): 311-333.
  
           Lin,
            C.J., Lin, Y.M. & Lee, C.Y. 2010. Nonlinear system control using a
            recurrent neural fuzzy network based on reinforcement particle swarm
            optimization. The 3rd International Symposium on Computational Intelligence
              and Design (ISCID2010). pp. 196-200.
  
           Lin,
            C.J., Chen, C.H. & Lin, C.T. 2009. A hybrid of cooperative particle swarm
            optimization and cultural algorithm for neural fuzzy network and its prediction
            applications. IEEE Trans. on Systems, Man, and Cybernetics--Part C:
              Applications and Reviews 38(1): 55-68.
  
           Montgomery,
            J. 2010. Crossover and the different faces of differential evolution searches. Proc.
              of the IEEE Congress on Evolutionary Computation. pp. 1804-1811.
  
           Montgomery,
            J. & Chen, S. 2010. An analysis of the operation of differential evolution
            at high and low crossover rates. Proc. of the IEEE Congress on Evolutionary
              Computation. pp. 881-888.
  
           Natsuki,
            H. & Hitoshi, I. 2003. Particle swarm optimization with Gaussian mutation. Proceedings
              of the 2003 IEEE Swarm Intelligence Symposium. pp. 72-79.
  
           Neri,
            F. & Tirronen, V. 2010. Recent advances in differential evolution: A survey
            and experimental analysis. Artificial Intelligence Review 33(1-2):
            61-106.
  
           Ronkkonen,
            J., Kukkonen, S. & Price, K.V. 2005. Real-parameter optimization with
            differential evolution. Proceedings of IEEE Congress on Evolutionary
              Computation. pp. 506-513.
  
           Saruhan,
            H. 2014. Differential evolution and simulated annealing algorithms
            formechanical systems design. Engineering Science and Technology, an
              International Journal 17(3): 131-136.
  
           Shang,
            Y.W. & Qin, Y.H. 2006. A note on the extended rosenbrock function. Evolutionary
              Computation 14(1): 119-126.
  
           Simon,
            D. 2013. Evolutionary Optimization Algorithms. New York: Wiley.
  
           Storm,
            R. & Price, K. 1997. Differential evolution - A simple and efficient
            heuristic for global optimization over continuous spaces. Journal of Global
              Optimization 11(4): 341-359.
  
           Yang,
            Z., Tang, K. & Yao, X. 2010. Scalability of generalized adaptive
            differential evolution for large-scale continuous optimization. Soft
              Computing 15(11): 2141-2155.
  
           Wang,
            J.Z., Wang, J.J., Zhang, Z.G. & Guo, S.P. 2011. Forecasting stock indices
            with back propagation neural network. Expert Systems with Applications 38(11):
            14346-14355.
  
           
             
           *Corresponding
            author; email: cjlin@ncut.edu.tw    
       |