Sains Malaysiana 44(11)(2015): 1573–1577

 

Synthesis of Oil Palm Empty Fruit Bunch (EFB) Derived Solid Acid Catalyst for Esterification of Waste Cooking Oils

(Sintesis Mangkin Asid Pepejal daripada Tandan Buah Kosong (EFB) Kelapa Sawit untuk Pengesteran Sisa Minyak Masak)

 

KOGULESHUN, S1., FEI-LING, PUA1,2.,* NABIHAH, S3., CHIN-HUA, CHIA3 & SHAMALA, G.1

 

1Department of Mechanical Engineering, Universiti Tenaga National, Jalan IKRAM-UNITEN

43000 Kajang, Selangor Darul Ehsan, Malaysia

 

2Centre of Renewable Energy, Universiti Tenaga National, Jalan IKRAM-UNITEN

43000 Kajang, Selangor Darul Ehsan, Malaysia

 

3School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 28 March 2015/Accepted: 6 July 2015

 

ABSTRACT

Oil palm empty fruit bunch (EFB) contributes to a large quantity of lignocellulosic waste. It is an abundantly available waste biomass in Malaysia. This project was aimed to utilize the waste materials for a better benefit. EFB were used as raw material to prepare a new solid catalyst for biodiesel production. Solid acid catalyst derived from EFB was used to catalyze the esterification process in biodiesel production from waste cooking oil. Solid acid catalyst was prepared by direct impregnation with transition metal sulfides, Fe2(SO4)3. This new catalyst was used to catalyze the esterification of high free fatty acid (FFA) value oil, e.g. waste cooking oils (WCOs) as pre-treatment step prior to biodiesel production. The highest catalytic activity with 90.95% esterification rate was achieved. The catalyst can be easily separated for reuse compared to homogenous catalyst which are used in biodiesel production. EFB has the potential to be converted into useful feedstock and the derived catalyst can replace the traditional liquid acid catalyst in biodiesel production especially for high acid value content feedstock.

 

Keywords: Acid value; catalyst; esterification; oil palm empty fruit bunch; solid acid catalyst

 

ABSTRAK

Tandan kosong kelapa sawit (EFB) telah menyumbang sisa lignosellulosik dalam kuantiti yang banyak di Malaysia. Objektif penyelidikan ini adalah untuk mempergunakan bahan buangan tersebut untuk faedah yang lebih baik. EFB telah digunakan sebagai bahan mentah untuk menyediakan mangkin pepejal baru dalam penghasilan biodiesel. Mangkin asid pepejal yang diperoleh daripada EFB telah digunakan untuk memangkinkan proses pengesteran dalam penghasilan biodiesel daripada sisa minyak masak. Mangkin asid pepejal telah disediakan melalui impregnasi terus dengan sulfida logam peralihan Fe2(SO4)3. Mangkin baru ini telah digunakan untuk memangkinkan pengesteran minyak bebas asid lemak berkualiti tinggi seperti sisa minyak masak (WCO) sebagai langkah rawatan awal sebelum penghasilan biodiesel. Aktiviti mangkinan yang tinggi dengan 90.95% kadar pengesteran telah dicapai. Mangkin ini mudah dipisahkan untuk digunakan semula jika dibandingkan dengan mangkin homogen yang digunakan dalam penghasilan biodiesel. EFB berpotensi ditukar menjadi stok suapan dan mangkin yang diperoleh boleh menggantikan mangkin asid cecair tradisi dalam penghasilan biodiesel terutama untuk nilai asid tinggi kandungan stok suapan.

 

Kata kunci: Mangkin; mangkin asid pepejal; nilai asid; pengesteran; tandan kosong kelapa sawit

 

REFERENCES

Amin, T.K., Nor Aishah, S.A. & Hossein, M. 2013. A review on novel processes of biodiesel production from waste cooking oil. Applied Energy 104: 683-710.

Ariza, M.J., Jones, D.J. & Roziere, J. 2002. Role of post sulfonation thermal treatment in conducting and thermal properties of sulfuric acid sulfonated poly (benzimidazole) membranes. Desalination 147: 183-189.

Baharuddin, A.S., Sulaiman, A., Kim, D.H., Mokhtar, M.N., Hassan, M.A., Wakisaka, M., Shirai, Y. & Nishida, H. 2013. Selective component degradation of oil palm empty fruit bunches (OPEFB) using high-pressure steam. Biomass and Bioenergy 55: 268-275.

Chen, G. & Fang, B. 2011. Preparation of solid acid catalyst from glucose-starch mixture for biodiesel production. Bioresource Technology 102: 2635-2640.

Christie, W.W. 1993. Preparation of ester derivatives of fatty acids for chromatographic analysis. Advances in Lipid Methodology 2: 69-111.

Deng, X., Fang, Z., Liu, Y.H. & Yu, C.L. 2011. Production of biodiesel from Jatropha oil catalyzed by nanosized solid basic catalyst. Energy 36: 777-784.

Economic Transformation Programme (ETP). 2013. Annual Report. http://etp.pemandu.gov.my/annualreport2013/. Accessed on 5th July 2015.

Guo, F., Fang, Z., Tian, X.F., Long, Y.D. & Jiang, L.Q. 2011. One-step production of biodiesel from Jatropha oil with high-acid value in ionic liquids. Bioresource Technology 102: 6469-6472.

Lou, W.Y., Zong, M.H. & Duan, Z.Q. 2008. Efficient production of biodiesel from high free fatty acid containing waste oils using various carbohydrate-derived solid acid catalysts. Bioresource Technology 99: 8752-8758.

Lu, H., Liu, Y., Zhou, H., Yang, Y., Chen, M. & Liang, B. 2009. Production of biodiesel from Jatropha curcasL. oil. Computers & Chemical Engineering 33: 1091-1096.

Pua, F.L., Zakaria, S., Chia, C.H., Fan, S.P., Thomas, R., Antje, P. & Liebner, F. 2013. Solvolytic liquefaction of oil palm empty fruit bunch (EFB) fibres: Analysis of product fractions using FTIR and Pyrolysis- GCMS. Sains Malaysiana42(6): 793-799.

Pua, F.L., Fang, Z., Zakaria, S., Chia, C.H. & Guo, F. 2011. Direct production of biodiesel from high-acid value Jatropha oil with solid acid catalyst derived from lignin. Biotechnology for Biofuel 4: 56-63.

Shu, Q., Gao, J., Nawaz, Z., Liao, Y., Wang, D. & Wang, J. 2010. Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst. Applied Energy 87: 2589-2596.

Suganuma, S., Nakajima, K., Kitano, M., Yamaguchi, D., Kato, H., Hayashi, S. & Hara, M. 2008. Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. Journal of the American Chemical Society 130: 12787-12793.

Tiwari, A.K., Kumar, A. & Raheman, H. 2007. Biodiesel production from Jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process. Biomass & Bioenergy 31: 569-575.

Veera, G.G. & Georgene, E.G. 2013. Biodiesel from waste cooking oils via direct sonication. Applied Energy 109: 135-144.

Wang, L., Dong, X., Jiang, H., Li, G. & Zhang, M. 2014. Preparation of a novel carbon-based solid acid from cassava stillage residue and its use for the esterification of free fatty acids in waste cooking oil. Bioresource Technology 158: 392-395.

Yee, K.F., Wu, J.C.S. & Lee, K.T. 2011. A green catalyst for biodiesel production from Jatropha oil: Optimization study. Biomass & Bioenergy 35: 1739-1746.

Zakaria, S., Liew, T.K., Chia, C.H., Fan, S.P., Roslan, R., Amran, U.A., Rosenau, T., Antje, P. & Liebner, F. 2013. Characterization of Fe2O3/FeOOH catalyzed solvolytic liquefaction of oil palm empty fruit bunch (EFB) products. Bioremediation & Biodegradation S4: 1-7.

 

 

*Corresponding author; email: feilingpua@yahoo.com

 

 

 

previous