Sains Malaysiana 42(8)(2013):
1073–1080
Aplikasi Sistem Maklumat Geografi untuk
Pemetaan Reruang-masa: Suatu Kajian Kes Denggi di Daerah Seremban, Negeri
Sembilan, Malaysia
(Application of Geographical
Information System for Spatial-temporal Mapping:
A Case Study of Dengue Cases
in Seremban, Negeri Sembilan, Malaysia)
Mohamad Naim Mohamad
Rasidi
Unit Metodologi dan
Statistik, Institut Kesihatan Umum, Kementerian Kesihatan Malaysia
Jalan Bangsar, 50590
Kuala Lumpur, Malaysia
Mazrura Sahani*
Program Kesihatan
Persekitaran dan Keselamatan Industri, Pusat Pengajian Sains Diagnostik
& Kesihatan Gunaan, Fakulti
Sains Kesihatan, Universiti Kebangsaan Malaysia
Jalan Raja Muda Abdul
Aziz, 50300 Kuala Lumpur, Malaysia
Hidayatulfathi Othman
Pusat Pengajian Sains
Diagnostik & Kesihatan Gunaan, Fakulti Sains Kesihatan
Universiti Kebangsaan
Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
Rozita Hod
Jabatan Kesihatan
Masyarakat
Pusat
Perubatan Universiti Kebangsaan Malaysia, Jalan
Yaacob Latif, Bandar Tun Razak
56000
Cheras, Kuala Lumpur, Malaysia
Shaharudin
Idrus
Institut
Alam Sekitar & Pembangunan (LESTARI), Universiti Kebangsaan Malaysia
43600,
UKM Bangi, Selangor D.E. Malaysia
Zainudin
Mohd Ali
Jabatan
Kesihatan Negeri Sembilan, Jalan Rasah, 70300 Seremban, Negeri Sembilan, Malaysia
Er
Ah Choy
Pusat
Pengajian Sosial, Pembangunan & Persekitaran, Fakulti Sains Sosial &
Kemanusiaan
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E. Malaysia
Mohd Hafiz Rosli
Akademi Sukan, Universiti
Putra Malaysia, 43400 UPM Serdang, Selangor D.E. Malaysia
Received: 7 Mac 2013/Accepted:
27 Mac 2013
ABSTRAK
Penyakit
denggi merupakan penyakit bawaan vektor yang menjadi salah satu ancaman utama
kesihatan awam di Malaysia. Pemetaan taburan
kes denggi daripada aspek reruang-masa boleh menjadi kaedah yang berguna dalam
menilai risiko denggi kepada masyarakat. Kajian ini
bertujuan untuk memetakan taburan reruang dan reruang-masa kes-kes denggi di
dalam daerah Seremban. Metodologi dijalankan dengan Sistem
Maklumat Geografi (GIS)
khususnya analisis reruang dan reruang-masa. Analisis
taburan reruang menggunakan Indeks Moran, purata kejiranan terdekat (ANN) dan anggaran kepadatan
Kernel. Analisis
reruang-masa ditentukan dengan indeks kekerapan, jangka masa dan intensiti
untuk mengenal pasti kawasan berisiko denggi mengikut masa. Sejumlah 6076 kes denggi dicatatkan di Pejabat Kesihatan Daerah
Seremban dari tahun 2003 hingga 2009. Kadar insiden denggi adalah tinggi
pada tahun 2003, 2008 dan 2009 dengan nisbah denggi : denggi berdarah adalah 21.6:1. Indeks Moran menunjukkan kes denggi berlaku
dalam pengelompokan dengan skor Z adalah 16.384 (p=0.000). Analisis ANN dengan
0.264 (p= 0.000) dengan purata jarak insiden antara kes denggi di dalam
kawasan kejiranan adalah 55 m. Anggaran kepadatan Kernel menunjukkan lokasi
kawasan panas kes denggi tertumpu di Nilai dan Ampangan. Analisis reruang masa
dengan purata nilai tertinggi indeks kekerapan, jangka masa dan intensiti
masing-masing melebihi 0.023, 0.614 dan 0.657 di kawasan berisiko tinggi denggi
di Nilai, Seremban dan Ampangan. Pengawalan denggi perlu diberi
tumpuan kepada kawasan berisiko tinggi ini.
Kata kunci: Denggi; GIS;
statistik reruang-masa
ABSTRACT
Dengue is a vector borne disease
which is one of the major threats to public health in Malaysia. Mapping of
dengue distribution in spatial and spatial-temporal aspects can be a useful
method in assessing the risk of dengue to the community. This study aimed to
map the spatial and spatial-temporal distribution of dengue cases in Seremban
district. The Geographical Information System specifically the spatial and
spatial-temporal analyses was applied. Spatial statistical analysis of dengue
cases used the Moran’s Index, average nearest neighbourhood (ANN)
and kernel density estimation. Spatial-temporal analysis was determined through
frequency, duration and intensity indices to identify timely dengue risk area.
A total of 6076 dengue cases were reported in Seremban Health District Office
from 2003-2009. The result showed a high incidence rate in 2003, 2008 dan 2009
with ratio of dengue: dengue hemorrhagic fever of 21.6:1. Moran’s I showed
dengue cases occurred in cluster with Z-score of 16.384(p=0.000). ANN analysis
of 0.264 (p= 0.000) where the mean distance between every dengue case is
55 m. Kernel density estimation showed the dengue hotspots concentrated in
Nilai and Ampangan. Spatial-temporal analysis with the highest mean of
frequency, duration and intensity indices of above 0.023, 0.614 and 0.657
showed that the high risk dengue areas were Nilai, Seremban and Ampangan. The
dengue control activities should be targeted at these high risk areas.
Keywords:
Dengue; GIS;
spatial-temporal analysis
REFERENCES
Almeida,
A.S., Andrade Mendronho, R. & Valencia, L.I.O. 2009. Spatial
analysis of dengue and socioeconomic content of the city of Rio de Janeiro
(southern Brazil). Rev Saúde Pública 43(4): 666-673.
Aziz, S. 2011. Evaluation of the spatial risk factors for high incidence of dengue
fever and dengue hemorrhagic fever using GIS Application. Sains
Malaysiana 40(8): 937-943.
Barreto, F.R., Teixeira
M.C., Carvalho, M.S. & Barreto M.L. 2008. Spread pattern of the first
dengue epidemic in the city of Salvador, Brazil. BMC Public Health 8:51.
http://www. biomedcentral.com/1471-2458/8/51 (18
September 2011).
Bithell, J.F. 1990. An application of density estimation to geographical epidemiology. Statistics in Medicine 9: 691-701.
Er, A.C., Rosli, M.H.,
Asmahani, A., Mohamad Naim, M.R. & Harsuzilawati, M. 2010. Spatial mapping
of dengue incidence: A case study in Hulu Langat District, Selangor, Malaysia. International
Journal of Human and Social Sciences 5(6): 410-414.
Houghton, J.T., Ding,
Y., Griggs, D.J., Noguer, M., van der Linden, P.J. & Xiaosu, D. 1996. Climate
Change 2001: The Scientific Basis. Cambridge: Cambridge University Press.
IPCC. 2001. Synthesis
Report. A Contribution of Working Groups I, II and III to the Third Assessment
Report of the Intergovernmental Panel on Climate Change. Cambridge:
Cambridge University Press.
Jabatan
Perancangan Bandar dan Desa. 2007. Data Digital. Kuala Lumpur:
Jabatan Perancangan Bandar Dan Desa.
Kementerian
Kesihatan Malaysia. 2006. Fakta Kesihatan Malaysia, Sistem Informasi Dan
Dokumentari.
Kementerian
Kesihatan Malaysia. 2010. Current Situation of Dengue and Dengue Hemorrhagic
Fever. http://www.moh. gov.my (20 Januari 2010).
King, C.C., Chao, D.Y.,
Wen, T.H., Kao, C.L., Ku, C.C., Wu, J.T.S., Huang, S.Y.J., Tipayamongkholgu,
M., Shang, C.S., Li, Y.S., Wang, H.T., Liao, M.Y., Wang, W.K., Wu, H.C. &
Chang, J.K.J. 2008. Epidemiologic characteristics of dengue in Taiwan and
implications for global control: A review. Dlm Dengue. Kerala: Research
Signpost. hlm. 1-44.
Levine,
N. 2007. Crimestat: A Spatial Statistics Program for the Analysis of Crime
Incident Locations (Version 3.0). Washington, D.C.: Ned Levine &
Associates, Houston, TX and the National Institute of Justice.
Malavige, G.N.,
Fernando, S., Fernando, D.J. & Seneviratne, S.L. 2004. Review: Dengue viral
infection. Postgraduate Medical Journal 80: 588-601.
Nazri,
C.D., Abu Hassan, A., Rabiatul, A. & Rodziah, I. 2010. Spatial mapping of
temporal risk characteristic of dengue cases in Subang Jaya. 2010
International Conference on Science and Social Research. December
5-7. Kuala Lumpur.
Nakhapakorn, K. &
Jirakajohnkool, S. 2006. Temporal and spatial autocorrelation statistics of
dengue fever. Dengue Bulletin 30: 171-183.
Seng, S.B., Chong, A.K.
& Moore, A. 2005. Geostatistikal Modelling, Analysis and Mapping of
Epidemiology of Dengue Fever in Johor State, Malaysia. The
17th Annual Colloquium of the Spatial Information Research Centre, University
of Otago, Dunedin, New Zealand. November 24-25.
Shaharudin,
I., Shamsul, A.S., Tahir, A., Mariam, M., Azah, D. & Nik Shamsidah, N.I.
2002. Sistem Maklumat Geografi (GIS) dan sektor kesihatan awam: Kajian demam denggi
di Bandar Baru Bangi dan Kajang. Jurnal Kesihatan Masyarakat 8(S):34-42.
Siti
Morni, U., Mazlin, M., Noraini, S. & Anizar, A. 2007. Generating a dengue
risk map (DRM) based on environmental factors using remote sensing and GIS
technologies. http:www.a-a-r-s.org/acrs/proceeding/ACRS2007/Papers/
TS27.4.pdf (2 Ogos 2011).
Wan Fairos, W.Y., Wan
Azaki, W.H., Mohamad Alias, L. & Bee Wah, Y. 2010. Modelling dengue fever
(DF) and dengue hemorrhagic fever (DHF) outbreak using Poisson and negative
binomial model. World Academy of Science, Engineering and Technology 62:
903-908.
Wen, T.H., Lin, N.H.,
Chao, D.Y., Hwang, K.P., Kan, C.C., Lin, K.C.M., Wu, J.T.S., Huang, S.Y.J.,
Fan, I.C. & King, C.C. 2009. Spatial-temporal patterns of dengue in areas
at risk of dengue hemorrhagic fever in Kaohsiung, Taiwan, 2002. International
Journal of Infectious Diseases 14(4): 334-343.
Wen,
T.H., Lin, H.N., Lin, C.H., King, C.C. & Su, M.D. 2006. Spatial mapping of
temporal risk characteristics to improve environmental health risk
identification: A case study of a dengue epidemic in Taiwan. Sci. Total
Environ. 367: 631-640.
*Corresponding
author; email: mazrura@gmail.com
|