Sains
Malaysiana 42(3)(2013): 307–318
Penghidroksilpropilan
Serabut Tandan Kosong Kelapa Sawit Menggunakan
Polietilena
Glikol (PEG)
(Hydroxypropylation of Empty
Fruit Bunches Fibre using Polyethylene glycol (PEG))
M.Z. Noreen Farzuhana
& S. Zakaria*
Pusat Pengajian Fizik
Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia
43600 Bangi, Selangor
Darul Ehsan, Malaysia
Received: 27 April 2011/Accepted:
4 October 2012
ABSTRAK
Penyelidikan
ini bertujuan untuk mengkaji tindak balas serabut tandan kosong kelapa sawit (EFBF)
melalui kaedah modifikasi kimia dan penghidroksilpropilan menggunakan
polietilena glikol (PEG). Peringkat pertama merujuk kepada tindak balas modifikasi kimia
menggunakan NaOH dan isopropanol. Peringkat seterusnya
adalah penyediaan hidroksilpropil-serabut tandan kosong kelapa sawit (HP-EFBF)
menggunakan berat molekul PEG berbeza (6000, 8000 dan 10000). Pencirian yang terlibat dalam kajian ini adalah analisis menggunakan mikroskop
elektron imbasan (SEM), spektroskopi inframerah
transformasi Fourier (FTIR), analisis termogravimetri (TGA),
penentuan kinetik tenaga pengaktifan (Ea), analisis pembelauan sinar-X
(XRD),
indeks kehabluran Selulosa (CrI) dan pertambahan berat HP-EFBF. Keputusan SEM menunjukkan morfologi
permukaan HP-EFBF mula membengkak dan terdapat pembentukan lubang
sepanjang permukaan gentian. Spektrum IR juga
menunjukkan getaran OH dalam EFBF tanpa
rawatan adalah pada 3402 cm-1 tetapi
selepas proses penghidroksilpropilan, getaran OH dalam HP-EFBF (10000, 8000 dan 6000) masing-masing sedikit teranjak kepada
3,392, 3,384 dan 3,370 cm-1. TGA menunjukkan
kestabilan terma HP-EFBF 6,000 lebih rendah berbanding HP-EFBF 8000 dan 10000. Selepas modifikasi kimia, tenaga
pengaktifan, Ea meningkat daripada 32.4 kepada 51.9 kJ/mol
berbanding EFBF tanpa rawatan iaitu 12.5 kJ/mol. XRD menunjukkan
puncak belauan (002) teranjak kepada sudut 2θ yang lebih kecil dan puncak
[(101), (10Î)] lenyap selepas proses penghidroksilpropilan. Indeks kehabluran
selulosa, CrI menunjukkan kehabluran EFBF tanpa rawatan berkurang
daripada 27% kepada 25% selepas modifikasi kimia. Semakin tinggi berat molekul PEG yang
digunakan, semakin tinggi pertambahan berat HP-EFBF.
Kata kunci: Hidroksilpropil-EFBF;
modifikasi kimia; polietilena glikol (PEG); serabut tandan kosong
ABSTRACT
The aim of this study was to
investigate the reaction of oil palm empty fruit bunches fibre (EFBF)
via chemical modification and hydroxypropylation method using polyethylene
glycol (PEG). The first stage was the modification of EFB fibre
using NaOH and isopropanol. The next stage was the preparation of
hydroxypropylated-empty fruit bunches fibre (HP-EFBF),
using different molecular weight of PEG (6000, 8000 and 10000). The
characterisation involved in this study were conducted by scanning electron
microscopy (SEM), Fourier transform infrared spectroscopy (FTIR),
thermogravimetry analysis (TGA), determination of kinetic
activation energy (Ea), X-ray diffraction (XRD),
cellulose crystallinity index (CrI) and weight increament of the HP-EFB fibre. SEM results showed the surface of HP-EFBF swelled and craters formed along the surface of the fibre. IR spectrum
also showed OH stretching band in EFB without
treatment is 3402 cm-1, but after hydroxypropylation
process, the OH stretching band in HP-EFBF (10000,
8000 and 6000) slightly shifted to 3,392, 3,384 and 3370 cm-1,
respectively. TGA showed the thermal stability of HP-EFBF 6,000
was lower than HP-EFBF 8,000 and 10000. After
chemical modification, the activation energy, Ea increased
from 32.4 to 51.9 kJ/mol more than EFB without treatment, 12.5
kJ/mol. XRD showed that diffraction peak (002) shifted to the
smaller 2θ angle and the peaks (101, 10Î) disappeared after
hydroxypropylation process. Crystallinity index of EFB without
treatment decreased from 27% to 25% after chemical modification. The higher the
molecular weight of the PEG, the greater the weight increament
of the HP-EFBF.
Keywords: Chemical modification; empty fruit bunches; hydroxypropyl-EFBF; polyethylene glycol (PEG)
REFERENCES
Agrawal, R., Saxena, N.S., Sharma, K.B., Thomas, S. &
Sreekala, M.S. 2000. Activation energy and crystallization kinetics
of untreated and treated oil palm fibre reinforced phenol formaldehyde
composites. Materials Science and Engineering A277: 77-82.
Alam Md.
Zahangir, Mamun Abdullah A., Qudsieh Islam Y. & Muyibi Suleyman, A. 2009.
Solid state bioconversion of oil palm empty fruit bunches for cellulose enzyme
production using a rotary drum bioreactor. Biochemical Engineering Journal 46:
61-64.
Alrios, M.G., Tejado, A., Blanco, M., Mondragon, I. & Labidi,
J. 2009. Agricultural palm oil tree residues as raw
material for cellulose, lignin and hemicelluloses production by ethylene glycol
pulping process. Chemical Engineering Journal 148: 106-114.
Atalla, R.H. 1983. The
structure of cellulose: Recent developments. In: Soltes, E.J. (eds). Wood
and Agricultural Residues: Research on Use for Feed, Fuels and Chemicals. New
York: Academic Press.
Badri, K.
& Khairul Anwar, M.A. 2006. Biocomposites from oil palm resources. Journal
of Oil Palm Research Special Issue-April: 103-113.
Beall, F.C.
& Eicker, H.W. 1970. Thermal Degradation of Wood Components: Review
of the Literature. U.S.D.AForest Service Research Paper.
Bjamestad, S. & Dahlman, O. 2002. Chemical
compositions of hardwood and softwood pulps employing photoacoustic fourier transform infrared spectroscopy in combination with
partial least-square analysis. Analytical Chemistry 74: 5851-5858.
Broido, A. 1969. Asimple,
sensitive graphical method of treating thermogravimetric analysis data. Journal
of Polymer Science 7: 1761-1773.
Chen, Y., Wang, Y., Wan, J. & Ma, Y. 2010. Crystal and
pore structure of wheat straw cellulose fiber during recycling. Cellulose 17(2):
329-338.
Deraman, M., Sarani Zakaria. & Andrianny, Murshidi.
2001. Estimation of crystallinity and crystallite size of cellulose in
benzylated fibres of oil palm empty fruit bunches by X-ray diffraction. Japan
Journal Applied Physics 40: 3311-3314.
Fengel, D. &
Wegener, G. 1989. Wood-Chemistry, Ultrastructure,
Reactions. Berlin: Walter de Gruyter.
Hazira, D.H.
2002. Synthesis of polyurethane adhesives from chemical modified oil palm empty
fruit bunch fibers. Tesis Sarjana, Universiti Kebangsaan Malaysia, Bangi,
Malaysia (tidak diterbitkan).
Laureano-Perez, L., Teymouri, F., Alizadeh, H. & Dale, B.E.
2005. Understanding factors that limit enzymatic hydrolysis of biomass. Applied Biochemistry and Biotechnology 124(1-3): 1081-1089.
Law, K-W.,
Wan Rosli Wan Daud & Arniza Ghazali. 2007. Morphological and chemical
nature of fiber strands of oil palm empty-fruit bunch (OPEFB). Bioresources 2(3):
351-362.
Mwaikambo,
L.Y. & Ansell, M.P. 2002. Chemical modification of hemp,
sisal, jute, and kapok fibers by alkalization. Journal of Applied
Polymer Science 84: 2222-2234.
Nakanishi,
K. 1969. Infrared Absorption Spectroscopy-Practical. Tokyo: Holden-Day, Inc, San Francisco dan Nankondo Company Limited.
Oujai, S.
& Shanks, R.A. 2005. Composition, structure and thermal
degradation of hemp cellulose after chemical treatments. Polymer
Degradation and Stability 89: 327-335.
Pan, H.,
Shupe, T-F. & Hse, C-Y. 2007. Characterization of liquefied wood residues
from different liquefaction conditions. Journal of Applied Polymer Science 105:
3739-3746.
Rowell, R.M.
& Gutzmer, D.I. 1975. Chemical modification of wood. Reaction of alkylene oxide with southern yellow pine. Wood
Science 7(3): 240-246.
Rozman,
H.D., Ahmadhilmi, K.R. & Abu Bakar, A. 2004. Polyurethane (PU) – oil
palm empty fruit bunch (EFB) composites: The effect of EFBG reinforcement in
mat form and isocyanate treatment on the mechanical properties. Polymer
Testing 23: 559-565.
Shiraishi, N., Itoh, H. & Lonikar, S.V. 1987. Adhesives
prepared from hydroxyethylated wood with or without explosion pretreatment. Journal
of Wood Chemistry and Technology 7(3): 405-426.
Silverstein,
R.M., Bassler, G.C. & Morril, T.C. 1996. Spectrometric
Identification of Organic Compounds. 5th ed. New
York: John Wiley and Sons.
Singh, J., Kaur, L. & McCarthy, O.J. 2007. Factors
influencing the physico-chemical, morphological, thermal and rheological
properties of some chemically modified starches for food applications. Food
Hydrocolloids 21: 1-22.
Sreekala, M.S., Kumaran,
M.G & Thomas, S. 1997. Oil palm fibers: Morphology, chemical composition,
surface modification and mechanical properties. Journal of Applied Science 66:
821-835.
Tanaka,
R., Hirose, S. & Hatakeyama, H. 2008. Preparation and characterization of
polyurethane foams using a palm oil–based polyol. Bioresource
Technology 99: 3810-3816.
Thring, R.W., Ni, P.
& Aharoni, S.M. 2004. Molecular weight effects of the soft segment on the
ultimate properties of lignin-derived polyurethanes. International Journal
of Polymeric Materials 53: 507-524.
Tserki,
V., Zafeiropoulos, N.E., Simon, F. & Panayiotou, C. 2005. Astudy
of the effect of acetylation and propionylation surface treatments on natural
fibres. Composites: Part A 36: 1110-1118.
Wahid, M.B. 2010. Overview of the Malaysian Oil Palm Industry 2009. http://www.mpob.gov.my (12 Januari 2010).
Yang, P. & Kokot, S.
1996. Thermal analysis of different cellulosic fabrics. Journal of Applied Polymer Science 60: 1137-1146.
Yao, Y., Yoshioka, M.
& Shiraishi, N. 1996. Water-absorbing polyurethane foams from liquefied
starch. Journal of Applied Polymer Science 60: 1939-1949.
Zeronian,
S.H. 1991. Intarcystalline swelling of cellulose. In: Nevell, T.
P & Zeronian, S.H. (eds). Cellulose Chemistry and its Application. pp
159-179. New York: Ellis Horwood Limited.
*Corresponding author; email: sarani_zakaria@yahoo.com
|