Sains Malaysiana 41(10)(2012): 1287–1299

 

Asymmetry Dynamic Volatility Forecast Evaluations using Interday and Intraday Data

(Penilaian Peramalan Kemeruapan Dinamik Asimetri dengan Data Antara dan Dalaman Harian)

 

 

Chin Wen Cheong* & Ng Sew Lai

Research Centre of Mathematical Science, Multimedia University,

63100 Cyberjaya, Selangor, Malaysia

 

Zaidi Isa

Pusat Pengajian Sains Matematik, Fakulti Sains dan Teknologi

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Abu Hassan Shaari Mohd Nor

Fakulti Pengurusan Perniagaaan, Universiti Kebangsaan Malaysia

43600 UKM Bangi, Selangor, Malaysia

 

Received: 27 October 2011 / Accepted: 22 May 2012

 

ABSTRAK

Ketepatan ramalan siri masa kewangan sering bergantung kepada ketepatan dan kewujudan cerapan sebenar dalam penilaian ramalan. Kajian ini bertujuan menangani isu-isu tersebut untuk mendapat model kemeruapan berubah masa asimetri yang dapat memberi prestasi yang baik berdasarkan data antara dan dalaman harian. Ketepatan model diperiksa berdasarkan pewakilan kemeruapan berubah masa paling sesuai dengan rangka kerja autoregresi heteroskedastisiti bersyarat. Untuk ketepatan peramalan, penilaian peramalan dijalankan berdasarkan tiga fungsi kerugian dengan proksi kemeruapan dan kemeruapan realisasi. Kajian empirik dilaksanakan pada dua pasaran saham utama dan keputusan penganggaran digunakan dalam mengkuantitikan risiko pasaran masing-masing. Keputusan empirik menunjukkan model asimetri Zakoian memberi keputusan penilaian peramalan dalam sampel yang terbaik manakala model DGE pula menandakan peramalan luar sampel yang paling tepat. Untuk pemilihan proksi kemeruapan, penggunaan data dalaman harian sebagai kemeruapan sebenar menunjukkan pembaikan yang signifikan dalam peramalan semua ufuk masa.

 

Kata kunci: Kemeruapan dinamik; kemeruapan realisasi; model ARCH; risiko pasaran

 

REFERENCES

Andersen, T. & Bollerslev, T. 1998. Answering the Skeptics: Yes, standard volatility models do provide accurate forecasts. International Economic Review 39: 885-905.

Andersen, T.G., Bollerslev, T. & Lange, S. 1999. Forecasting financial market volatility: sample frequency vis-à-vis forecast horizon. Journal of Empirical Finance 6: 457-477.

Andersen, T.G., Bollerslev, T., Diebold, F.X. & Ebens, H. 2001. The distribution of stock return volatility. Journal of Financial Economics 61: 43-76.

Barndorff-Nielsen, O.E. & Shephard, N. 2002. econometric analysis of realised volatility and its use in estimating stochastic volatility models. Journal of the Royal Statistical Society. Series B.64: 253-280.

Black, F. 1976. Studies of stock market volatility changes.Proceedings of the American Statistical Association, Business and Economic Statistics Section: 177-181.

Bollerslev, T. 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31: 307-327.

Bollerslev, T. 1987. A conditional heteroskedastic time series model for speculative prices and rates of return. Review of Economics and Statistics 69: 542-547.

Bollerslev, T. & Wooldridge, J.M. 1992. Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances. Econometric Reviews 11: 143-172.

Cheong, C.W., Abu Hassan S.M.N. & Zaidi, I. 2007. Asymmetry and long memory volatility: some empirical evidence using GARCH. Physica A 337: 651-664.

Ding, Z., Granger, W.J. & Engle, R.F. 1993. A long memory property of stock market returns and a new model. Journal of Empirical Finance 1: 83-106.

Ebens, H. 1999. Realized Stock Volatility. Department of Economics, Johns Hopkins University, Working Paper, 420.

Fama, E.F. 1998. Market efficiency, long-term returns and behavioural finance. Journal of Financial Economics 49(3): 283-306.

Glosten, L., Jagannathan, R. & Runkle, D. 1993. On the relation between the expected value and the volatility of the nominal excess return on stocks. Journal of Finance 48: 1779-1801.

He, C. & Teräsvirta, T. 1997. Statistical properties of the Asymmetric Power ARCH process. Working Paper Series in Economics and Finance, No., 199, Stockholm School of Economics.

Jorion, P. 1996. Risk and turnover in the foreign exchange market the microstructure of foreign exchange markets. In Frankel, J.A., Galli, G. & Giovanni A. (eds.), The Microstructure of Foreign Exchange Markets, Chicago: The University of Chicago Press.

Jorion, P. 2000. Value-at-risk: The New Benchmark for Manging Financial Risk. New York: McGraw-Hill.

Laurent, S. 2004. Analytical derivates of the APARCH model. Computational Economics 24: 51-57.

Marquardt, D.W. 1963. An Algorithm for Least Squares Estimation of Nonlinear Parameters. Journal of the Society for Industrial and Applied Mathematics 11: 431-441.

McMillan, D.G. & Thupayagale, P. 2008. Efficiency of the South African equity market. Applied Financial Economics Letters 4(5): 327-330.

Miller, M.H., Muthuswamy, J. & Whaley, R.E. 1994. Mean reversion of Standard and Poor 500 index basis changes: Arbitrage-induced or statistical illusion? Journal of Finance 49: 479-513.

Mincer, J. & Zarnowitz, V. 1969. The Evaluation of Economic Forecasts Economic Forecasts and Expectations. New York: National Bureau of Economic Research.

Nelson, D. 1991. Conditional heteroskedasticity in asset returns: A New Approach. Econometrica 59: 347-370.

Schwert, W. 1990. Stock Volatility and the Crash of ’87. Review of Financial Studies 3: 77-102.

Taylor, S.J. 1986. Modeling Financial Time Series. New York, NY: Wiley and Sons.

Zakoian, J.M. 1990. Threshold Heteroskedastic Models. CREST, INSEE, Paris.

 

 

*Corresponding author; email: wcchin@mmu.edu.my

 

 

previous