Sains
Malaysiana 41(10)(2012): 1287–1299
Asymmetry
Dynamic Volatility Forecast Evaluations using Interday and Intraday Data
(Penilaian Peramalan Kemeruapan Dinamik Asimetri dengan Data
Antara dan Dalaman Harian)
Chin Wen Cheong* & Ng Sew Lai
Research
Centre of Mathematical Science, Multimedia University,
63100
Cyberjaya, Selangor, Malaysia
Zaidi
Isa
Pusat
Pengajian Sains Matematik, Fakulti Sains dan Teknologi
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Abu
Hassan Shaari Mohd Nor
Fakulti
Pengurusan Perniagaaan, Universiti Kebangsaan Malaysia
43600
UKM Bangi, Selangor, Malaysia
Received:
27 October 2011 / Accepted: 22 May 2012
ABSTRAK
Ketepatan ramalan siri masa kewangan sering
bergantung kepada ketepatan dan kewujudan cerapan sebenar dalam penilaian
ramalan. Kajian
ini bertujuan menangani isu-isu tersebut untuk mendapat model kemeruapan
berubah masa asimetri yang dapat memberi prestasi yang baik berdasarkan data
antara dan dalaman harian. Ketepatan model diperiksa
berdasarkan pewakilan kemeruapan berubah masa paling sesuai dengan rangka kerja
autoregresi heteroskedastisiti bersyarat. Untuk
ketepatan peramalan, penilaian peramalan dijalankan berdasarkan tiga fungsi
kerugian dengan proksi kemeruapan dan kemeruapan realisasi. Kajian empirik dilaksanakan pada dua pasaran saham utama dan
keputusan penganggaran digunakan dalam mengkuantitikan risiko pasaran masing-masing. Keputusan empirik menunjukkan model asimetri Zakoian memberi
keputusan penilaian peramalan dalam sampel yang terbaik manakala model DGE pula
menandakan peramalan luar sampel yang paling tepat. Untuk
pemilihan proksi kemeruapan, penggunaan data dalaman harian sebagai kemeruapan
sebenar menunjukkan pembaikan yang signifikan dalam peramalan semua ufuk masa.
Kata kunci: Kemeruapan dinamik; kemeruapan realisasi;
model ARCH; risiko pasaran
REFERENCES
Andersen, T. & Bollerslev, T. 1998. Answering the Skeptics: Yes, standard volatility models do
provide accurate forecasts. International Economic Review 39: 885-905.
Andersen, T.G., Bollerslev, T. & Lange, S. 1999.
Forecasting financial market volatility: sample frequency vis-à-vis forecast
horizon. Journal of Empirical Finance 6: 457-477.
Andersen, T.G., Bollerslev, T.,
Diebold, F.X. & Ebens, H. 2001. The distribution of stock return volatility. Journal of Financial Economics 61: 43-76.
Barndorff-Nielsen, O.E. & Shephard,
N. 2002. econometric analysis of realised volatility and its use in estimating stochastic volatility
models. Journal of the Royal Statistical Society. Series B.64: 253-280.
Black, F. 1976. Studies of stock market volatility changes.Proceedings of the American Statistical Association, Business and Economic Statistics
Section: 177-181.
Bollerslev, T. 1986. Generalized autoregressive conditional heteroskedasticity. Journal
of Econometrics 31: 307-327.
Bollerslev, T. 1987. A conditional heteroskedastic time series
model for speculative prices and rates of return. Review of Economics
and Statistics 69: 542-547.
Bollerslev,
T. & Wooldridge, J.M. 1992. Quasi-maximum likelihood
estimation and inference in dynamic models with time-varying covariances. Econometric Reviews 11: 143-172.
Cheong,
C.W., Abu Hassan S.M.N. & Zaidi, I. 2007. Asymmetry and long memory
volatility: some empirical evidence using GARCH. Physica A 337: 651-664.
Ding,
Z., Granger, W.J. & Engle, R.F. 1993. A long memory
property of stock market returns and a new model. Journal of
Empirical Finance 1: 83-106.
Ebens,
H. 1999. Realized Stock Volatility. Department of Economics, Johns
Hopkins University, Working Paper, 420.
Fama,
E.F. 1998. Market efficiency, long-term returns and
behavioural finance. Journal of Financial Economics 49(3):
283-306.
Glosten,
L., Jagannathan, R. & Runkle, D. 1993. On the relation
between the expected value and the volatility of the nominal excess return on
stocks. Journal of Finance 48: 1779-1801.
He, C. & Teräsvirta, T. 1997. Statistical properties of the Asymmetric Power ARCH process. Working Paper Series in Economics and Finance, No., 199, Stockholm School of
Economics.
Jorion,
P. 1996. Risk and turnover in the foreign exchange market the microstructure of
foreign exchange markets. In Frankel, J.A., Galli, G. & Giovanni A. (eds.), The Microstructure of Foreign Exchange
Markets, Chicago: The University of Chicago Press.
Jorion,
P. 2000. Value-at-risk: The New Benchmark for Manging Financial Risk.
New York: McGraw-Hill.
Laurent,
S. 2004. Analytical derivates of the APARCH model. Computational Economics 24: 51-57.
Marquardt,
D.W. 1963. An Algorithm for Least Squares Estimation of
Nonlinear Parameters. Journal of the Society for Industrial and
Applied Mathematics 11: 431-441.
McMillan,
D.G. & Thupayagale, P. 2008. Efficiency of the South
African equity market. Applied Financial Economics Letters 4(5):
327-330.
Miller, M.H., Muthuswamy, J. & Whaley, R.E. 1994. Mean reversion of Standard and Poor 500 index basis changes: Arbitrage-induced
or statistical illusion? Journal of Finance 49: 479-513.
Mincer, J. & Zarnowitz, V. 1969. The Evaluation of Economic Forecasts Economic Forecasts and
Expectations. New York: National Bureau of Economic Research.
Nelson, D. 1991. Conditional heteroskedasticity in
asset returns: A New Approach. Econometrica 59: 347-370.
Schwert, W. 1990. Stock Volatility and
the Crash of ’87. Review of Financial Studies 3: 77-102.
Taylor,
S.J. 1986. Modeling Financial Time Series. New York, NY: Wiley and Sons.
Zakoian,
J.M. 1990. Threshold Heteroskedastic Models. CREST, INSEE, Paris.
*Corresponding
author; email: wcchin@mmu.edu.my
|