Sains Malaysiana 40(3)(2011): 267–273
Gateless-FET pH Sensor Fabricated on Undoped AlGaN/GaNHEMT Structure
(Penderia pH FET tanpa Get difabrikasi di atas Struktur HEMT AlGaN/GaN Tidak Didop)
Maneea Eizadi Sharifabad, Mastura Shafinaz Zainal Abidin, Shaharin Fadzli AbdRahman, Abdul Manaf Hashim*
& Abdul Rahim Abdul Rahman
Material Innovations and Nanoelectronics (MINE), Research Group
Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai,
Johor, Malaysia
Nurul Afzan Omar & Mohd Nizam Osman
Telekom Research and Development, TM Innovation Centre, 63000 Cyberjaya, Malaysia
Rabia Qindeel
Department of Physics, Faculty of Science
Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
Received: 5 July 2010 / Accepted: 3 September 2010
ABSTRACT
Gallium nitride with wurtzite crystal structure is a chemically stable
semiconductor with high internal spontaneous and piezoelectric polarization,
which make it highly suitable materials to create very sensitive and robust
sensors for the detection of ions, gases and liquids. Sensing characteristics
of an open-gate liquid-phase sensor fabricated on undoped-AlGaN/GaN high-electron-mobility-transistor (HEMT)
structure in aqueous solution was investigated. In ambient atmosphere, the
open-gate undoped AlGaN/GaN HEMT clearly showed only the presence
of linear region of currents while Si-doped AlGaN/GaN showed the linear and saturation regions of currents,
very similar to those of gated devices. This seems to show that very low Fermi
level pinning by surface states exists in undoped AlGaN/GaN sample. In aqueous
solution, the typical current-voltage (I-V) characteristics of HEMTs
with good gate controllability were observed. The potential of the AlGaN surface at the open-gate area is effectively
controlled via aqueous solution by Ag/AgCl reference
gate electrode. The open-gate undoped AlGaN/GaN HEMT structure
is capable of stable operation in aqueous electrolytes and exhibit linear
sensitivity, and high sensitivity of 1.9 mA/pH or
3.88 mA/mm/pH at drain-source voltage, VDS =
5 V was obtained. Due to large leakage current where it increases with the
negative reference gate voltage, the Nernstian’s like
sensitivity cannot be determined. Suppression of current leakage is likely to improve
the device performance. The open-gate undoped-AlGaN/GaN structure is expected to be suitable for pH sensing
application.
Keywords: AlGaN/GaN; HEMT;
liquid-phase; open-gate structure; pH sensor
ABSTRAK
Galium nitrat dengan struktur hablur wurtzit adalah semikonduktor kimia yang stabil dengan polarisasi dalaman spontan dan polarisasi piezoelektrik yang tinggi, membuatkannya menjadi bahan yang sangat sesuai sebagai penderia yang sensitif dan kuat untuk mengesan ion, gas dan cecair. Pencirian penderia fasa-cecair get terbuka yang difabrikasi di atas struktur AlGaN/GaN-tidak didop transistor-pergerakan-elektron-tinggi (HEMT) dalam larutan akuas dikaji. Dalam keadaan ambien, AlGaN/GaN-tidak didop HEMT get terbuka menunjukkan dengan jelas hanya ada kawasan arus linear sementara AlGaN/GaN- Si-dop menunjukkan kawasan arus linear dan tepu, hampir serupa dengan peranti berget. Hal ini menunjukkan bahawa tahap pengepinan Fermi sangat rendah oleh permukaan dalam sampel AlGaN/GaN-tidak didop. Dalam larutan akuas, ciri arus-voltan (I-V) HEMTs dengan pengawalan get yang baik diperhatikan. Keupayaan permukaan AlGaN di kawasan get terbuka dikawal secara berkesan melalui larutan akuas dengan elektrod get rujukan Ag/AgCl digunakan. Struktur AlGaN/GaN-tidak didop HEMT get terbuka mampu beroperasi stabil di dalam elektrolit akuas dan menunjukkan sensitiviti linear, dan diperoleh sensitivitinya tinggi bernilai 1.9 mA/pH atau 3.88 mA/mm/pH pada voltan salir-punca, VDS = 5 V. Disebabkan kebocoran arus besar dan ia meningkat dengan voltan rujukan negatif, sensitiviti Nernstian tidak dapat ditentukan. Pengurangan kebocoran arus akan meningkatkan prestasi peranti. Struktur AlGaN/GaN-tidak didop HEMT get terbuka dijangkakan sesuai untuk aplikasi penderiaan pH.
Kata kunci: AlGaN/GaN; fasa cecair; HEMT; penderia pH; struktur get terbuka
REFERENCES
Alifragis, Y., Volosirakis, A., Chaniotakis,
N.A., Konstantinidis, G., Iliopoulos, E. & Georgakilas, A. 2007. AlGaN/GaN high electron mobility transistor
sensor sensitive to ammonium ions. Physica Solidi Status A204(6):
2059-2063.
Ambacher, O., Foutz, B., Smart, J., Shealy, J.R., Weimann, N.G., Chu, K., MurpHy,
M., Sierakowski, A.J., Schaff,
W.J., Eastman, L.F., Dimitrov, R., Mitchell, A.
& Stutzmann, M. 2000. Two
dimensional electron gases induced by spontaneous and piezoelectric
polarization in undoped and doped AlGaN/GaN heterostructures. Journal
of Applied Physics 87(1): 334-344.
Baranzahi, A., Spetz, A.L. & Lundstrom, I. 1995. Reversible hydrogen annealing of
metal-oxide-silicon carbide devices at high temperatures. Applied
Physics Letters 67(21): 3203-3205.
Bousse, L., De Rooij, N.F. & Bergveld, P. 1983. Operation of the chemically sensitive field-effect sensors as a
function of the insulation-electrolyte interface. IEEE Transactions
on Electron Device 30(10): 1263-1273.
Eickhoff, M., Neuberger, R., Steinhoff, G., Ambacher, O.,Muller,
G. & Stutzmann, M. 2001. Wetting behaviour of GaN-surfaces
with Ga- or N-face polarity. Physica Status Solidi B 228(2): 519-522.
Eickhoff, M., Schalwig, J., Steinhoff, G., Weidemann,
O., Gorgens, L., Neuberger, R., Hermann, M., Baur, B., Muller, G., Ambacher, O. & Stutzmann M.
2003. Electronics and sensors based on pyroelectric AlGaN/GaN heterostructures. Part B: Sensor Applications, Physica Status Solidi (C).
0(6): 1908-1918.
Esahi, M. & Matsuo,
T. 1978. Integrated micro multi ion sensor using field effect of
semiconductor. IEEE Transactions on Biomedical Engineering 25(2):
184-192.
Hasegawa,
H., Inagaki, T., Ootomo, S. & Hashizume, T.
2003. Mechanism of current collapse and gate
leakage in AlGaN/GaN heterostructure field effect transistor. Journal
of Vacuum Science and Technology B 21(4): 1844-1855.
Kokawa, T., Sato, T.,
Hasegawa, H. & Hashizume, T. 2006. Liquid-pHase sensor using open-gate AlGaN/GaN high electron mobility transistor structure. Journal
of Vacuum Science and Technology 24(4): 1972-1976.
Luther, B.P., Wolter, S.D. & Mohney, S.E.
1999. High temperature Pt schottky diode gas sensors on n-type GaN. Sensors
Actuators B 56(1-2): 164-168.
Rizzi, A. & Luth, H. 2002. III-V semiconductor
interface properties as a knowledge basis for modern heterostructure devices. Applied Physics A: Material Science and Processing 75: 69–77.
Schalwig, J., Muller, G., Ambacher, O. & Stutzmann, M.
2001. Group-III-nitride based gas sensing devices. Physica Status Solidi A185(1): 39-45.
Schalwig, J., Muller, G., Eickhoff, M., Ambacher, O. & Stutzmann, M. 2002. Gas sensitive GaN/AlGaN-heterostructures. Sensors Actuators B 87(3): 425-430.
Siu, W.M. & Cobbold, R.S.C. 1979. Basic properties of the electrolyte-SiO2-Si system:
Physical and theoretical aspects. IEEE Transactions on Electron Devices 26(11):
1805-1815.
Steinhoff,
G., Hermann, M., Schaff, W.J., Eastman, L.F., Stutzmann, M. & Eickhoff, M.
2003. pH response of GaN surfaces and its application for pH-sensitive field-effect transistors. Applied
Physics Letters 83(1): 177-179.
Stutzmann, M., Steinhoff,
G., Eickhoff, M., Ambacher,
O., Nebel, C.E., Schalwig,
J., Neuberger, R. & Muller, G. 2002. GaN-based heterostructures for sensor
applications. Diamond Related Materials 11(3-6): 886-891.
Yates,
D.E., Levine, S. &
Healy, T.W. 1974. Site-binding model of the electrical double
layer at the oxide/water interface. Journal of Chemical Society,
Faraday Transactions I. 70: 1807-1818.
*Corresponding
author; email: manaf@fke.utm.my
|