Sains Malaysiana 40(3)(2011): 237–244
Atomic Force
Microscopy as a Tool for Asymmetric Polymeric Membrane Characterization
(Mikroskop Daya Atom sebagai Alat Pencirian Asimetrik Membran Polimer)
Abdul Wahab Mohammad*,1, Nidal Hilal2, Lim Ying Pei1, Indok Nurul Hasyimah Mohd Amin1 & Rafeqah Raslan1
1Department of Chemical and
Process Engineering
Faculty
of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor D.E., Malaysia
2Centre for Water Advanced
Technologies and Environmental Research (CWATER)
Multidisciplinary
Nanotechnology Centre, College of Engineering, Swansea University, Swansea SA2
8PP, United Kingdom
Received:
15 July 2010 / Accepted: 3 September 2010
ABSTRACT
Atomic force microscopy (AFM)
has a wide range of applications and is rapidly growing in research and
development. This powerful technique has been used to visualize surfaces both
in liquid or gas media. It has been considered as an effective tool to
investigate the surface structure for its ability to generate high-resolution
3D images at a subnanometer range without sample
pretreatment. In this paper, the use of AFM to characterize the
membrane roughness is presented for commercial and self-prepared membranes for
specific applications. Surface roughness has been regarded as one of the most
important surface properties, and has significant effect in membrane
permeability and fouling behaviour. Several scan
areas were used to compare surface roughness for different membrane samples.
Characterization of the surfaces was achieved by measuring the average
roughness (Ra) and root mean square roughness (Rrms)
of the membrane. AFM image shows that the membrane
surface was composed entirely of peaks and valleys. Surface roughness is
substantially greater for commercial available hydrophobic membranes, in
contrast to self-prepared membranes. This study also shows that foulants deposited on membrane surface would increase the
membrane roughness.
Keywords: Atomic Force
Microscopy (AFM); fouling; hydrophobic; membrane roughness
ABSTRAK
Mikroskop Daya Atom (AFM) mempunyai penggunaan yang meluas dan berkembang pesat dalam penyelidikan serta pembangunan. Teknik ini telah digunakan untuk menggambarkan permukaan di udara dan proses berkaitan persekitaran yang berair. Ia merupakan alat yang berkesan untuk menghasilkan imej 3D yang beresolusi tinggi struktur permukaan pada ukuran julat subnanometer tanpa penyediaan awal sampel. Dalam kajian ini, penggunaan Mikroskop Daya Atom untuk menentukan kekasaran membran ditunjukkan untuk membran komersial dan membran yang dihasilkan di makmal dan bagi aplikasi yang khusus. Kekasaran permukaan adalah salah satu ciri permukaan yang penting dan memberi kesan yang signifikan kepada kebolehtelapan air dan sifat kekotoran pada membran. Beberapa kawasan imbasan telah digunakan untuk memperbaiki perbezaan kekasaran permukaan pada sampel yang berlainan. Ciri-ciri permukaan telah diperolehi melalui ukuran purata kekasaran (Ra) dan punca kuasa dua kekasaran membran (Rrms). Imej AFM menunjukkan permukaaan membran terdiri daripada puncak dan lembah. Kekasaran permukaan adalah lebih tinggi bagi membran komersil sedia ada yang hidrofobik, berbeza dengan penghasilan membran sendiri. Kajian ini juga menunjukkan agen kotoran yang terendap pada permukaan membran akan meningkatkan kekasaran membran.
Kata kunci: Hidrofobik; kekasaran membrane;
kekotoran;
Mikroskop Daya Atom (AFM)
REFERENCES
Bessieres, A., Meireles, M., Coratger, R. &
Sanchez, J.B.V. 1996. Investigations of surface properties of
polymeric membranes by near field microscopy. Journal of Membrane
Science 109: 271-284.
Bottino, A., Capannelli, G., Grosso, A., Monticelli, O., Cavalleri, O., Rolandi, R. & Soria, R. 1994. Surface
characterization of ceramic membranes by atomic force microscopy. Journal
of Membrane Science 95: 289-296.
Boussu, K., Van der Bruggen, B., Volodin, A., Snauwaert, J., Van Haesendock, C. & Vandecasteele,
C. 2005. Roughness and hydrophobicity studies of nanofiltration membranes using different
modes of AFM. Journal of Colloid and Interface Science 286:
632-638.
Boussu, K., Van der Bruggen, B., Volodin, A., Van Haesendonck, C., Delcour, J.A., Van der Meeren, P. & Vandecasteele,
C. 2006. Characterization of commercial nanofiltration membranes and comparison with self-made polyethersulfone membranes. Desalination 191:
245-253.
Bowen, W.R. 1993. In Membranes in Bioprocessing,
edited by Howell, J.A., Sanchez, V. & Field, R.W. 265-291. London:
Blackie.
Bowen, W.R. & Doneva, T.A. 2000. Artefacts in AFM studies of membranes: correcting pore images using fast fourier transform filtering. Journal of Membrane Science 171: 141-147
Bowen, W.R., Hilal, N., Lovitt, R.W. & Wright, C.J. 1998a. Atomic force
microscopy as a tool for the membrane technologist. Microscopy and
Analysis 68: 13-16.
Bowen, W.R., Hilal, N., Lovitt, R.W. &
Wright, C.J. 1998b, A new technique for membrane characterisation: Direct measurement of the force of
adhesion of a single particle using an atomic force microscope. Journal of
Membrane Science 139: 269-274.
Bowen, W.R., Hilal, N., Lovitt, R.W. & Wright, C.J. 1999a. Atomic force microscope studies
of membrane surfaces, In Surface Chemistry and Electrochemistry of Membrane
Surfaces, edited by Sørensen, T.S. (ed.). Surfactant Science Series 79: 1-37.
Bowen,
W.R., Hilal, N., Jain, M., Lovitt,
R.W., Sharif, A.O. & Wright, C.J. 1999b. The
effects of electrostatic interactions on the rejection of colloids by membrane
pores – visualization and quantification. Chemical Engineering
Science 54: 369-375.
Bowen, W.R., Hilal, N., Lovitt, R.W. & Wright, C.J., 1999c. Characterisation of membrane surfaces: Direct measurement of biological adhesion using an atomic
force microscope. Journal of Membrane Science 154: 205-212.
.
Chahboun, A., Coratger, R., Ajustron, F., Beauvillian, J., Aimar, P. &
Sanchez, V. 1992. Comparative study of micro− and ultrafiltration membranes using STM, AFM and SEM
techniques. Ultramicroscopy 41:
235-244.
Dietz,
P., Hansma, P.K., Inacker,
O., Lehmann, H.D. & Herrmann, K.H. 1992. Surface pore
structures of micro- and ultrafiltration membranes
imaged with the atomic force microscope. Journal of Membrane Science 65:
101-111.
Ducker,
W.A., Senden T. J. & Pashley,
R.M. 1992. Measurements of forces in liquids using a
force microscope. Langmuir 8: 1831-1836.
Hilal, N., Al-Zoubi, H., Darwish, N.A.,
Mohammad, A.W. & Abu Arabi, M. 2004. A comprehensive
review of nanofiltration membranes: Treatment,
pretreatment, modelling, and atomic force microscopy. Desalination 170: 281-308.
Jönsson, A.S., Lindau, J., Wimmerstedt, R., Brinck, J. & Jönsson, B.
1997. Influence of the concentration of a low-molecular organic
solute on the flux reduction of a polyethersulphone ultrafiltration membrane. Journal of Membrane Science 135:
117-128.
Lin,
C.H., Lin, W.C. & Yang, M.C. 2009. Fabrication and characterization of ophthalmically compatible hydrogels composed of poly(dimethyl siloxane-urethane)/Pluronic F127. Colloids and Surfaces B: Biointerfaces71:
36-44.
Miwa, T., Yamaki, M., Yoshimusa, H., Ebina, S. & Nagayama, K.
1992. Artifacts in atomic force microscopy images of fine particle and protein
two-dimensional crystals as evaluated with scanning electron microscopy and
simulations. Japanese Journal of Applied Physics 31: L1495.
Mizes, H.A. 1995. Surface Roughness and Particle Adhesion. The Journal of
Adhesion 51: 155-165.
Pagliero, C., Ochoa, N., Marchese, J. & Mattea, M. 2001. Degumming of crude soybean oil by ultrafiltration using polymeric membranes. Journal of the American Oil Chemists’ Society 78: 793-796.
Park,
N., Kwon, B., Kim, I.S. & Cho, J.W. 2005. Biofouling potential of various NF membranes with respect
to bacteria and their soluble microbial products (SMP): Characterizations, flux
decline, and transport parameters. Journal of Membrane Science 258:
43-54.
Veríssimo, S., Peinemann, K.V. & Bordado, J.
2006. Influence of the diamine structure on
the nanofiltration performance, surface morphology
and surface charge of the composite polyamide membranes. Journal of Membrane
Science 279: 266-275.244
Walz, J.Y. 1998. The
effect of surface heterogeneities on colloidal forces. Advances in
Colloid and Interface Science 74: 119-168.
*Corresponding author; e-mail:
wahabm@vlsi.eng.ukm.my
|