Sains Malaysiana 40(11)(2011): 1301–1305

 

Aesthetic Spiral for Design

(Lingkaran Estetik untuk Reka Bentuk)

 

 

R.U. Gobithaasan

Dept. of Mathematics, Faculty of Science and Technologi, University Malaysia Terengganu,

21030 Kuala Terengganu, Malaysia

 

Kenjiro T. Miura

Graduate School of Science & Technology, Shizuoka University, Shizuoka 432-8561,

Japan

 

Received: 15 March 2010 / Accepted: 9 March 2011

 

 

ABSTRACT

A planar spiral called Generalized Log Aesthetic Curve segment (GLAC) has been proposed using the curve synthesis process with two types of formulation; ρ-shift and κ-shift. Both methods were carried out by extending the formulation of Generalized Cornu Spiral (GCS) in a similar manner to the Log Aesthetic Curve (LAC). The family of GLAC comprises of planar curves of high quality such as GCS, LAC, clothoid, logarithmic spiral and circle involute. The GLAC segment has an additional parameter to determine its shape as compared to GCS and LAC segment, hence an extra constraint can be satisfied when shaping the GLAC segment. The last section of the paper shows a numerical example.

 

Keywords: Curve synthesis; spiral; high quality curves; monotonic curvature curves

 

ABSTRAK

Satu lingkaran segmen 2D bernama Lengkung Astetik Log Umum (GLAC) telah dibentuk dengan menggunakan proses sintesis lengkung melalui dua jenis rumusan; ρ-shift dan κ-shift. Kedua-dua perumusan ini dikembangkan dengan menggunakan rumus Lingkaran Cornu Umum (GCS) yang mirip dengan pembentukkan rumus Lengkung Astestik Log (LAC). Ahli keluarga GLAC ini terdiri daripada lengkung-lengkung yang berkualiti tinggi contohnya seperti GCS, LAC, lingkaran klotoid, lingkaran logarithma, bulatan involut dan sebagainya. Segmen GLAC ini juga mempunyai satu parameter tambahan untuk menentukan bentuknya berbanding dengan segmen GCS dan LAC, maka satu kekangan tambahan dapat dipenuhidalam pembentukan segmen GLAC. Bahagian akhir menunjukkan satu contoh berangka.

 

Kata kunci: Lengkung berkualiti tinggi; lengkung berkelengkungan monotonic; lingkaran; sintesis lengkung

 

REFERENCES

 

Ali, J.M., Tookey, R.M., Ball, J.V. & Ball, A.A. 1999. The generalised Cornu spiral and its application to span generation. Journal of Computational and Applied Mathematics 102: 37-47.

Buchard, H.G., Ayers, J.A., Frey, W.H. & Sapidis, N. 1994. chapter Approximation with Aesthetic constraints. Designing Fair Curves and Surfaces 3-28, SIAM.

Cripps, R.J. 2003. Algorithms to support point-based CADCAM. Int. Journal of Machine Tools and Manufacture 43: 425-432.

Farin, G. & Sapidis, N. 1989. Curvature and the fairness of curves and surfaces. Computer Graphics and Applications 9(2): 52-57.

Farin, G. 2002. Curves and Surfaces for CAGD: A Practical Guide. 5th Ed., San Francisco: Academic Press.

Gobithaasan, R.U. 2010. The Development of Planar Curves with High Aesthetic Value. PhD dissertation, Universiti Sains Malaysia (unpublished)

Gobithaasan, R.U, Ali, J.M. & Miura K.T. 2009. The Elucidation of Planar Aesthetic Curves Proc. of 17th Int. Conf. in Central Europe on Computer Graphics, Visualization and Computer Vision, Plzen, 183-188.

Gobithaasan, R.U., Miura K.T. & Ali, J.M. 2008. Determining the aesthetic value of a planar curve. e-Proc. of 9th Int. Mathematica Symposium, Holland.

Guggenheimer, H.W. 1963. Differential Geometry. New York: McGraw-Hill.

Harada, T., Yoshimoto, F. & Moriyama, M. 1994. An aesthetic curve in the field of industrial design. Proc. IEEE Symposium On Visual Language, Tokyo, 38-47.

Kanaya, I., Nakano, Y. & Sato, K. 2003. Simulated designer’s eyes: Classification of aesthetic surfaces. Proc. VSMM 2003 Montreal pp 289-296

Miura, K.T. 2006a. Derivation of general formula of aesthetic curves. Proc. of 8th Int. Conf. on Humans & Computers, Tokyo 166-171.

Miura, K.T. 2006b. General equation of aesthetic curve and their self-affinity. Computer Aided Design and Applications 3(1-4): 457-464.

Nutbourne, A.W. & Martin, R. 1988. Differential Geometry Applied to Curve and Surface Design Volume 1: Foundations. Chicester: Ellis Horward Limited.

Pugh, S. 1991. Total Design. Great Britain: Addison-Wesley Publishing Company.

Yoshida, N. & Saito, T. 2006. Interactive aesthetic curve segments. Visual Computer 22: 896-905.

Yoshida, N. & Saito, T. 2007. Quasi-aesthetic curves in rational cubic Bezier forms. Computer Aided Design and Applications 4: 477-486.

 

 

*Corresponding author; email : gr@umt.edu.my or gobithaasan@gmail.com

 

 

 

 

 

 

 

 

 

previous