Sains Malaysiana 40(10)(2011): 1173–1178

 

Improved Sufficient Conditions for Monotonic Piecewise

Rational Quartic Interpolation

(Syarat Cukup yang Lebih Baik untuk Interpolasi Kuartik Nisbah Cebis Demi Cebis Berekanada)

 

 

Abd Rahni Mt Piah*

School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia

 

Keith Unsworth

Department of Applied Computing, P.O. Box 84,Lincoln University, Lincoln 7647 , Christchurch, New Zealand

 

Received: 7 July 2010/Accepted: 17 January 2011

 

ABSTRACT

In 2004, Wang and Tan described a rational Bernstein-Bézier curve interpolation scheme using a quartic numerator and linear denominator. The scheme has a unique representation, with parameters that can be used either to change the shape of the curve or to increase its smoothness. Sufficient conditions are derived by Wang and Tan for preserving monotonicity, and for achieving either C1 or C2 continuity. In this paper, improved sufficient conditions are given and some numerical results presented.

 

Keywords: Continuity; interpolation; monotonicity; rational Bernstein-Bézier

 

 

ABSTRAK

Pada tahun 2004, Wang and Tan telah memerikan suatu skema interpolasi lengkung Bernstein-Bézier nisbah menggunakan pembilang kuartik dan penyebut linear. Skema tersebut mempunyai suatu perwakilan yang unik, dengan parameter yang boleh digunakan untuk menukar sama ada bentuk lengkung atau untuk meningkatkan kelicinan lengkung. Syarat cukup diterbitkan oleh Wang & Tan untuk mengekalkan keekanadaan, dan untuk mencapai keselanjaran sama ada C1 atau C2. Dalam kertas kerja ini, syarat perlu yang lebih baik dan beberapa keputusan berangka diberikan.

 

Kata kunci: Interpolasi; keekanadaan; keselanjaran;Bernstein-Bézier nisbah

 

REFERENCES

Akima, H. 1970. A new method and smooth curve fitting based on local procedures. Journal of the Association for Computing Machinery 17: 589-602.

Delbourgo, R. & Gregory, J.A. 1985. The determination of derivative parameters for a monotonic rational quadratic interpolant. IMA Journal of Numerical Analysis 5:397-406.

Duan, Q., Xu G., Liu A., Wang, X. & Cheng, F. 1999. Constrained interpolation using rational cubic spline with linear denominators. Korean Journal of Computational and Applied Mathematics 6(1): 203-215.

Gregory, J.A. & Delbourgo, R. 1982. Piecewise rational quadratic interpolation to monotonic data. IMA Journal of Numerical Analysis 2: 123-130.

Hussain, M.Z. & Sarfraz, M. 2009. Monotone piecewise rational cubic interpolant. International Journal of Computer Mathematics 86(3): 423-430.

Sarfraz, M. 2000. A rational cubic spline for visualization of monotonic data. Computers & Graphics 24(4): 509-516.

Sarfraz, M. 2002. Some remarks on a rational cubic spline for visualization of monotonic data. Computers & Graphics 26: 193-197.

Sarfraz, M. 2003. A rational cubic spline for the visualization of monotonic data: an alternate approach. Computers & Graphics 27: 107-121.

Wang, Q. & Tan, J. 2004. Rational quartic involving shape parameters. Journal of Information & Computational Science 1(1): 127-130.

 

 

*Corresponding author; e-mail: arahni@cs.usm.my

 

 

 

previous